001     1024916
005     20250203103450.0
024 7 _ |a 10.3390/electricity4020009
|2 doi
024 7 _ |a 10.34734/FZJ-2024-02566
|2 datacite_doi
024 7 _ |a WOS:001187490200001
|2 WOS
037 _ _ |a FZJ-2024-02566
082 _ _ |a 621.3
100 1 _ |a Aghsaee, Roya
|0 0000-0003-1316-391X
|b 0
245 _ _ |a Data-Driven, Short-Term Prediction of Charging Station Occupation
260 _ _ |a Basel
|c 2023
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1712751816_24403
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Enhancing electric vehicle infrastructure by forecasting the availability of charging stations can boost the attractiveness of electric vehicles. The transportation sector plays a crucial role in battling climate change. The majority of available prediction algorithms either achieve poor accuracy or predict the availability at certain points in time in the future. Both of these situations are not ideal and may potentially hinder the model’s applicability to real-world situations. This paper provides a new model for estimating the charging duration of charging events in real time, which may be used to estimate the waiting time of users at fully occupied charging stations. First, the prediction is made using the random forest regressor (RF), and then the prediction is enhanced utilizing the findings of the RF model and real-time information of the currently occurring charging events. We compare the proposed method with the RF model, which is the approach’s foundational model, and the best-performing prediction model of the light gradient boosting machine (LightGBM). Here, we make use of historical information of charging events gathered from 2079 charging stations across Germany’s 4602 fast-charging connectors. To reduce data bias, we specifically simulate prediction requests for 30% of the charging events with various characteristics that were not trained with the model. Overall, the suggested method performs better than both the RF and the LightGBM. In addition, the model’s structure is adaptable and can incorporate real-time information on charging events.
536 _ _ |a 1223 - Batteries in Application (POF4-122)
|0 G:(DE-HGF)POF4-1223
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Hecht, Christopher
|0 0000-0002-2763-659X
|b 1
|e Corresponding author
700 1 _ |a Schwinger, Felix
|0 0000-0001-7754-3933
|b 2
700 1 _ |a Figgener, Jan
|0 0000-0003-2216-9432
|b 3
700 1 _ |a Jarke, Matthias
|0 0000-0001-6169-2942
|b 4
700 1 _ |a Sauer, Dirk Uwe
|0 P:(DE-Juel1)172625
|b 5
773 _ _ |a 10.3390/electricity4020009
|g Vol. 4, no. 2, p. 134 - 153
|0 PERI:(DE-600)3037251-3
|n 2
|p 134 - 153
|t Electricity
|v 4
|y 2023
|x 2673-4826
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1024916/files/Data-Driven%2C%20Short-Term%20Prediction%20of%20Charging%20Station%20Occupation.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1024916/files/Data-Driven%2C%20Short-Term%20Prediction%20of%20Charging%20Station%20Occupation.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1024916/files/Data-Driven%2C%20Short-Term%20Prediction%20of%20Charging%20Station%20Occupation.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1024916/files/Data-Driven%2C%20Short-Term%20Prediction%20of%20Charging%20Station%20Occupation.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1024916/files/Data-Driven%2C%20Short-Term%20Prediction%20of%20Charging%20Station%20Occupation.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1024916
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)172625
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1223
|x 0
914 1 _ |y 2024
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-04-12T14:57:21Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-04-12T14:57:21Z
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-04-12T14:57:21Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-28
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-28
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21