001024923 001__ 1024923
001024923 005__ 20250203103207.0
001024923 0247_ $$2doi$$a10.1016/j.apenergy.2023.121747
001024923 0247_ $$2ISSN$$a0306-2619
001024923 0247_ $$2ISSN$$a1872-9118
001024923 0247_ $$2WOS$$aWOS:001061927700001
001024923 037__ $$aFZJ-2024-02573
001024923 082__ $$a620
001024923 1001_ $$0P:(DE-HGF)0$$aWang, Qiao$$b0
001024923 245__ $$aTransferable data-driven capacity estimation for lithium-ion batteries with deep learning: A case study from laboratory to field applications
001024923 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2023
001024923 3367_ $$2DRIVER$$aarticle
001024923 3367_ $$2DataCite$$aOutput Types/Journal article
001024923 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1738569964_21855
001024923 3367_ $$2BibTeX$$aARTICLE
001024923 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001024923 3367_ $$00$$2EndNote$$aJournal Article
001024923 520__ $$aCapacity estimation plays a vital role in ensuring the health and safety management of lithium-ion battery-based electric-drive systems. This research focuses on developing a transferable data-driven framework for accurately estimating the capacity of lithium-ion batteries with the same chemistry but different capacities in field applications. The proposed approach leverages universal information from a laboratory dataset and utilizes a pre-trained network designed for small-capacity batteries with constant-current discharging profiles. By applying this framework, capacity estimation for large-capacity batteries under drive cycles can be efficiently achieved with improved performance. In addition, the incremental capacity analysis is employed on two datasets, selecting a robust voltage interval for health indicator extraction with physical interpretations and uncertainty awareness of different fast charging protocols. The feature extraction and dimension increase processes are automated, utilizing the last short charging sequences in wide voltage intervals while considering the uncertainty related to various user charging habits. Results demonstrate that the proposed strategy significantly enhances both robustness and accuracy. When compared to conventional methods, the proposed method exhibits an average root mean square error improvement of 68.40% and 65.89% in the best and worst cases, respectively. The robustness of the proposed strategy is further verified through 30 randomized health indicator verifications. This research showcases the potential of transferable deep learning in improving capacity estimation by leveraging universal information for field applications. The findings emphasize the importance of sharing knowledge across different capacities of lithium-ion batteries, enabling more effective and accurate capacity estimation techniques.
001024923 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001024923 536__ $$0G:(BMBF)03XP0334$$aBMBF 03XP0334 - Model2Life- Modellbasierte Systemauslegung für 2nd-Life-Nutzungsszenarien von mobilen Batteriesystemen (03XP0334)$$c03XP0334$$x1
001024923 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001024923 7001_ $$aYe, Min$$b1
001024923 7001_ $$aCai, Xue$$b2
001024923 7001_ $$0P:(DE-Juel1)172625$$aSauer, Dirk Uwe$$b3
001024923 7001_ $$aLi, Weihan$$b4
001024923 773__ $$0PERI:(DE-600)2000772-3$$a10.1016/j.apenergy.2023.121747$$gVol. 350, p. 121747 -$$p121747 -$$tApplied energy$$v350$$x0306-2619$$y2023
001024923 8564_ $$uhttps://juser.fz-juelich.de/record/1024923/files/Transferable%20data-driven%20capacity%20estimation%20for%20lithium-ion%20batteries%20with%20deep%20learning_%20A%20case%20study%20from%20laboratory%20to%20field%20applications.pdf$$yRestricted
001024923 8564_ $$uhttps://juser.fz-juelich.de/record/1024923/files/Transferable%20data-driven%20capacity%20estimation%20for%20lithium-ion%20batteries%20with%20deep%20learning_%20A%20case%20study%20from%20laboratory%20to%20field%20applications.gif?subformat=icon$$xicon$$yRestricted
001024923 8564_ $$uhttps://juser.fz-juelich.de/record/1024923/files/Transferable%20data-driven%20capacity%20estimation%20for%20lithium-ion%20batteries%20with%20deep%20learning_%20A%20case%20study%20from%20laboratory%20to%20field%20applications.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
001024923 8564_ $$uhttps://juser.fz-juelich.de/record/1024923/files/Transferable%20data-driven%20capacity%20estimation%20for%20lithium-ion%20batteries%20with%20deep%20learning_%20A%20case%20study%20from%20laboratory%20to%20field%20applications.jpg?subformat=icon-180$$xicon-180$$yRestricted
001024923 8564_ $$uhttps://juser.fz-juelich.de/record/1024923/files/Transferable%20data-driven%20capacity%20estimation%20for%20lithium-ion%20batteries%20with%20deep%20learning_%20A%20case%20study%20from%20laboratory%20to%20field%20applications.jpg?subformat=icon-640$$xicon-640$$yRestricted
001024923 909CO $$ooai:juser.fz-juelich.de:1024923$$pVDB
001024923 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172625$$aForschungszentrum Jülich$$b3$$kFZJ
001024923 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001024923 9141_ $$y2024
001024923 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL ENERG : 2022$$d2023-08-25
001024923 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-25
001024923 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-25
001024923 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-25
001024923 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-25
001024923 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-25
001024923 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-25
001024923 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-25
001024923 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-25
001024923 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-08-25
001024923 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bAPPL ENERG : 2022$$d2023-08-25
001024923 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001024923 980__ $$ajournal
001024923 980__ $$aVDB
001024923 980__ $$aI:(DE-Juel1)IEK-12-20141217
001024923 980__ $$aUNRESTRICTED
001024923 981__ $$aI:(DE-Juel1)IMD-4-20141217