001 | 1024927 | ||
005 | 20250203103355.0 | ||
024 | 7 | _ | |a 10.1039/D3RA02488A |2 doi |
024 | 7 | _ | |a 10.34734/FZJ-2024-02577 |2 datacite_doi |
024 | 7 | _ | |a 37323458 |2 pmid |
024 | 7 | _ | |a WOS:001006393700001 |2 WOS |
037 | _ | _ | |a FZJ-2024-02577 |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Herbers, Lukas |0 0000-0002-6534-546X |b 0 |
245 | _ | _ | |a An ionic liquid- and PEO-based ternary polymer electrolyte for lithium metal batteries: an advanced processing solvent-free approach for solid electrolyte processing |
260 | _ | _ | |a London |c 2023 |b RSC Publishing |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1712750834_24401 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a A processing solvent-free manufacturing process for cross-linked ternary solid polymer electrolytes (TSPEs) is presented. Ternary electrolytes (PEODA, Pyr14TFSI, LiTFSI) with high ionic conductivities of >1 mS cm−1 are obtained. It is shown that an increased LiTFSI content in the formulation (10 wt% to 30 wt%) decreases the risk of short-circuits by HSAL significantly. The practical areal capacity increases by more than a factor of 20 from 0.42 mA h cm−2 to 8.80 mA h cm−2 before a short-circuit occurs. With increasing Pyr14TFSI content, the temperature dependency of the ionic conductivity changes from Vogel–Fulcher–Tammann to Arrhenius behavior, leading to activation energies for the ion conduction of 0.23 eV. In addition, high Coulombic efficiencies of 93% in Cu‖Li cells and limiting current densities of 0.46 mA cm−2 in Li‖Li cells were obtained. Due to a temperature stability of >300 °C the electrolyte guarantees high safety in a broad window of conditions. In LFP‖Li cells, a high discharge capacity of 150 mA h g−1 after 100 cycles at 60 °C was achieved. |
536 | _ | _ | |a 1221 - Fundamentals and Materials (POF4-122) |0 G:(DE-HGF)POF4-1221 |c POF4-122 |f POF IV |x 0 |
536 | _ | _ | |a BACCARA - Battery and superCapacitor ChARActerization and testing (608491) |0 G:(EU-Grant)608491 |c 608491 |f FP7-ENERGY-2013-1 |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Küpers, Verena |0 0000-0003-0193-1088 |b 1 |
700 | 1 | _ | |a Winter, Martin |b 2 |
700 | 1 | _ | |a Bieker, Peter |0 P:(DE-Juel1)180777 |b 3 |e Corresponding author |
773 | _ | _ | |a 10.1039/D3RA02488A |g Vol. 13, no. 26, p. 17947 - 17958 |0 PERI:(DE-600)2623224-8 |n 26 |p 17947 - 17958 |t RSC Advances |v 13 |y 2023 |x 2046-2069 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1024927/files/An%20ionic%20liquid-%20and%20PEO-based%20ternary%20polymer%20electrolyte%20for%20lithium%20metal%20batteries_%20an%20advanced%20processing%20solvent-free%20approach%20for%20solid%20electrolyte%20processing.pdf |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1024927/files/An%20ionic%20liquid-%20and%20PEO-based%20ternary%20polymer%20electrolyte%20for%20lithium%20metal%20batteries_%20an%20advanced%20processing%20solvent-free%20approach%20for%20solid%20electrolyte%20processing.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1024927/files/An%20ionic%20liquid-%20and%20PEO-based%20ternary%20polymer%20electrolyte%20for%20lithium%20metal%20batteries_%20an%20advanced%20processing%20solvent-free%20approach%20for%20solid%20electrolyte%20processing.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1024927/files/An%20ionic%20liquid-%20and%20PEO-based%20ternary%20polymer%20electrolyte%20for%20lithium%20metal%20batteries_%20an%20advanced%20processing%20solvent-free%20approach%20for%20solid%20electrolyte%20processing.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1024927/files/An%20ionic%20liquid-%20and%20PEO-based%20ternary%20polymer%20electrolyte%20for%20lithium%20metal%20batteries_%20an%20advanced%20processing%20solvent-free%20approach%20for%20solid%20electrolyte%20processing.jpg?subformat=icon-640 |
909 | C | O | |o oai:juser.fz-juelich.de:1024927 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)180777 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-122 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Elektrochemische Energiespeicherung |9 G:(DE-HGF)POF4-1221 |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a Creative Commons Attribution CC BY 3.0 |0 LIC:(DE-HGF)CCBY3 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-26 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b RSC ADV : 2022 |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2023-08-01T15:04:19Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2023-08-01T15:04:19Z |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-26 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-26 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2023-10-26 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2023-08-01T15:04:19Z |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-10-26 |
915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |d 2023-10-26 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-26 |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-12-20141217 |k IEK-12 |l Helmholtz-Institut Münster Ionenleiter für Energiespeicher |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-12-20141217 |
981 | _ | _ | |a I:(DE-Juel1)IMD-4-20141217 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|