Home > Publications database > Immobilizing Poly(vinylphenothiazine) in Ketjenblack‐Based Electrodes to Access its Full Specific Capacity as Battery Electrode Material > print |
001 | 1024932 | ||
005 | 20250203103405.0 | ||
024 | 7 | _ | |a 10.1002/adfm.202210512 |2 doi |
024 | 7 | _ | |a 1616-301X |2 ISSN |
024 | 7 | _ | |a 1057-9257 |2 ISSN |
024 | 7 | _ | |a 1099-0712 |2 ISSN |
024 | 7 | _ | |a 1616-3028 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2024-02582 |2 datacite_doi |
024 | 7 | _ | |a WOS:000918277100001 |2 WOS |
037 | _ | _ | |a FZJ-2024-02582 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Tengen, Bärbel |0 0000-0003-1319-2577 |b 0 |
245 | _ | _ | |a Immobilizing Poly(vinylphenothiazine) in Ketjenblack‐Based Electrodes to Access its Full Specific Capacity as Battery Electrode Material |
260 | _ | _ | |a Weinheim |c 2023 |b Wiley-VCH |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1712752109_24399 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a Zudem unterstützt durch: MEET Hi-EnD III (03XP0258A), DFG Germany’s Excellence Strategy (EXC-2193/1- 390951807, grantee A.F.) |
520 | _ | _ | |a Organic batteries are considered as environmentally friendly alternative to lithium-ion batteries due to the application of transition metal-free redox-active polymers. One well-established polymer is poly(3-vinyl-N-methylphenothiazine) (PVMPT) with a fast reversibility of the electrochemical redox reaction at a potential of 3.5 V versus Li|Li+. The oxidized PVMPT is soluble in many standard battery electrolytes, which diminishes its available specific capacity but at the same time can lead to a unique charge/discharge mechanism involving a redeposition process upon discharge. Herein, the influence of different conductive carbon additives and their properties, e.g., specific surface area, pore size distribution, and electrical conductivity, on the dissolution behavior of oxidized PVMPT is investigated. Compared to the state-of-the-art conductive carbon Super C65 employed in many organic battery electrodes, Ketjenblack EC-300J and EC-600J reduce the dissolution of the oxidized PVMPT due to better immobilization on the carbon additive and in the resulting 3D structure of the electrode, as assessed by N2-physisorption, electrochemical, UV–vis spectroscopy and scanning electron microscopy investigations. The studies demonstrate that a dense packing of the carbon particles in the electrode is decisive for the stable immobilization of PVMPT while maintaining its long-term cycling performance. |
536 | _ | _ | |a 1221 - Fundamentals and Materials (POF4-122) |0 G:(DE-HGF)POF4-1221 |c POF4-122 |f POF IV |x 0 |
536 | _ | _ | |a DFG project 398214985 - Heteroaromatische Redoxpolymere für Lithium-/organische Batterien (HALO) (398214985) |0 G:(GEPRIS)398214985 |c 398214985 |x 1 |
588 | _ | _ | |a Dataset connected to DataCite |
700 | 1 | _ | |a Winkelmann, Timo |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Ortlieb, Niklas |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Perner, Verena |b 3 |
700 | 1 | _ | |a Studer, Gauthier |b 4 |
700 | 1 | _ | |a Winter, Martin |0 P:(DE-Juel1)166130 |b 5 |u fzj |
700 | 1 | _ | |a Esser, Birgit |0 0000-0002-2430-1380 |b 6 |
700 | 1 | _ | |a Fischer, Anna |b 7 |
700 | 1 | _ | |a Bieker, Peter |0 P:(DE-Juel1)180777 |b 8 |e Corresponding author |
773 | _ | _ | |a 10.1002/adfm.202210512 |g Vol. 33, no. 9, p. 2210512 |0 PERI:(DE-600)2039420-2 |n 9 |p 2210512 |t Advanced functional materials |v 33 |y 2023 |x 1616-301X |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1024932/files/Adv%20Funct%20Materials%20-%202023%20-%20Tengen%20-%20Immobilizing%20Poly%20vinylphenothiazine%20in%20Ketjenblack%E2%80%90Based%20Electrodes%20to%20Access%20its.pdf |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1024932/files/Adv%20Funct%20Materials%20-%202023%20-%20Tengen%20-%20Immobilizing%20Poly%20vinylphenothiazine%20in%20Ketjenblack%E2%80%90Based%20Electrodes%20to%20Access%20its.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1024932/files/Adv%20Funct%20Materials%20-%202023%20-%20Tengen%20-%20Immobilizing%20Poly%20vinylphenothiazine%20in%20Ketjenblack%E2%80%90Based%20Electrodes%20to%20Access%20its.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1024932/files/Adv%20Funct%20Materials%20-%202023%20-%20Tengen%20-%20Immobilizing%20Poly%20vinylphenothiazine%20in%20Ketjenblack%E2%80%90Based%20Electrodes%20to%20Access%20its.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1024932/files/Adv%20Funct%20Materials%20-%202023%20-%20Tengen%20-%20Immobilizing%20Poly%20vinylphenothiazine%20in%20Ketjenblack%E2%80%90Based%20Electrodes%20to%20Access%20its.jpg?subformat=icon-640 |
909 | C | O | |o oai:juser.fz-juelich.de:1024932 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)166130 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)180777 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-122 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Elektrochemische Energiespeicherung |9 G:(DE-HGF)POF4-1221 |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1230 |2 StatID |b Current Contents - Electronics and Telecommunications Collection |d 2023-10-24 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-10-24 |
915 | _ | _ | |a IF >= 15 |0 StatID:(DE-HGF)9915 |2 StatID |b ADV FUNCT MATER : 2022 |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-10-24 |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2023-10-24 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-24 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-24 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-10-24 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ADV FUNCT MATER : 2022 |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-24 |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-12-20141217 |k IEK-12 |l Helmholtz-Institut Münster Ionenleiter für Energiespeicher |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-12-20141217 |
981 | _ | _ | |a I:(DE-Juel1)IMD-4-20141217 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|