001024996 001__ 1024996
001024996 005__ 20250512115734.0
001024996 0247_ $$2doi$$a10.1038/s44172-023-00152-6
001024996 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-02590
001024996 0247_ $$2WOS$$aWOS:001478238300001
001024996 037__ $$aFZJ-2024-02590
001024996 1001_ $$0P:(DE-Juel1)185648$$aGutsch, Moritz$$b0$$eCorresponding author
001024996 245__ $$aCo-assessment of costs and environmental impacts for off-grid direct air carbon capture and storage systems
001024996 260__ $$a[London]$$bNature Publishing Group UK$$c2024
001024996 3367_ $$2DRIVER$$aarticle
001024996 3367_ $$2DataCite$$aOutput Types/Journal article
001024996 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1717568292_30952
001024996 3367_ $$2BibTeX$$aARTICLE
001024996 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001024996 3367_ $$00$$2EndNote$$aJournal Article
001024996 520__ $$aLarge-scale deployment of direct air carbon capture and storage (DACS) is required to offset CO2 emissions. To guide decision-making, a combined assessment of costs and environmental impacts for DACS systems is necessary. Here we present a cost model and life cycle assessment for several combinations of off-grid DACSs, powered by photovoltaic (PV) energy and heat pumps combined with battery storages to mitigate intermittency of the PV energy source. Utilization factors of DACSs are estimated for different locations, power of PV systems and battery capacities. We find that the cost optimal layout for a DACS in Nevada (USA) with a nominal CO2 removal capacity of 100,000tCO2 per year consists of 100 MW PV and 300MWh battery. Costs are $755 and $877 for gross and net removal of 1tCO2. The cost difference is explained by a carbon removal efficiency (CRE) of 88%. Of 16 evaluated environmental impact categories mineral resource use is most problematic. We conceive a dashboard which allows to track how changes to technical parameters, such as energy consumption or adsorbent degradation, impact costs, CRE and combined environmental impacts. In an optimized scenario and including tax credits, costs for net-removal of 1tCO2 will be $216 at a CRE of 93%.
001024996 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001024996 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001024996 7001_ $$00000-0003-0237-691X$$aLeker, Jens$$b1
001024996 773__ $$0PERI:(DE-600)3121995-0$$a10.1038/s44172-023-00152-6$$gVol. 3, no. 1, p. 14$$n1$$p14$$tCommunications engineering$$v3$$x2731-3395$$y2024
001024996 8564_ $$uhttps://juser.fz-juelich.de/record/1024996/files/Co-assessment%20of%20costs%20and%20environmental%20impacts%20for%20off-grid%20direct%20air%20carbon%20capture%20and%20storage%20systems.pdf$$yOpenAccess
001024996 8564_ $$uhttps://juser.fz-juelich.de/record/1024996/files/Co-assessment%20of%20costs%20and%20environmental%20impacts%20for%20off-grid%20direct%20air%20carbon%20capture%20and%20storage%20systems.gif?subformat=icon$$xicon$$yOpenAccess
001024996 8564_ $$uhttps://juser.fz-juelich.de/record/1024996/files/Co-assessment%20of%20costs%20and%20environmental%20impacts%20for%20off-grid%20direct%20air%20carbon%20capture%20and%20storage%20systems.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001024996 8564_ $$uhttps://juser.fz-juelich.de/record/1024996/files/Co-assessment%20of%20costs%20and%20environmental%20impacts%20for%20off-grid%20direct%20air%20carbon%20capture%20and%20storage%20systems.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001024996 8564_ $$uhttps://juser.fz-juelich.de/record/1024996/files/Co-assessment%20of%20costs%20and%20environmental%20impacts%20for%20off-grid%20direct%20air%20carbon%20capture%20and%20storage%20systems.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001024996 8767_ $$8SN-2024-00427-b$$92024-05-28$$a1200203943$$d2024-06-05$$eAPC$$jZahlung erfolgt
001024996 909CO $$ooai:juser.fz-juelich.de:1024996$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001024996 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185648$$aForschungszentrum Jülich$$b0$$kFZJ
001024996 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001024996 9141_ $$y2024
001024996 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001024996 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001024996 915pc $$0PC:(DE-HGF)0113$$2APC$$aDEAL: Springer Nature 2020
001024996 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001024996 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001024996 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-09-03
001024996 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-09-03
001024996 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-05
001024996 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-05
001024996 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-10T15:36:47Z
001024996 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-10T15:36:47Z
001024996 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-04-10T15:36:47Z
001024996 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001024996 9801_ $$aFullTexts
001024996 980__ $$ajournal
001024996 980__ $$aVDB
001024996 980__ $$aI:(DE-Juel1)IEK-12-20141217
001024996 980__ $$aUNRESTRICTED
001024996 980__ $$aAPC
001024996 981__ $$aI:(DE-Juel1)IMD-4-20141217