001     1024998
005     20250204113833.0
024 7 _ |a 10.1002/batt.202300478
|2 doi
024 7 _ |a 10.34734/FZJ-2024-02592
|2 datacite_doi
024 7 _ |a WOS:001155402500001
|2 WOS
037 _ _ |a FZJ-2024-02592
082 _ _ |a 540
100 1 _ |a Herbers, Lukas
|0 0000-0002-6534-546X
|b 0
245 _ _ |a Converting a Commercial Separator into a Thin‐film Multi‐Layer Hybrid Solid Electrolyte for Li Metal Batteries
260 _ _ |a Weinheim
|c 2024
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1712748380_24402
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a To address the manifold challenges solid electrolytes (SE) do face in NMC‖Lithium metal batteries, we demonstrate that these can be overcome by converting a commercial Celgard 2500 separator into a jack of all trades hybrid solid electrolyte (HSE). This approach follows a multi-layer electrolyte strategy, to better cope with the very different chemistries of the cathode, the bulk electrolyte material, and the Li metal anode. A cathode-facing electrolyte layer based on lithium aluminum titanium phosphate (LATP) provides a high voltage stability of ≥4.5 V. High mechanical strength of the overall thin film electrolyte (≤50 μm) is achieved with a middle layer based on Celgard 2500. The layer on the anode side, based on polyethylene oxide (PEO), allows stable cycling of the lithium metal. High Coulombic efficiencies in NMC622‖Li metal cells (99.9 %) and LFP‖Li metal cells (99.9 %) enable long term cycling with high-capacity retention of 46 % and 52 % after 1,000 cycles, respectively.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
536 _ _ |a BACCARA - Battery and superCapacitor ChARActerization and testing (608491)
|0 G:(EU-Grant)608491
|c 608491
|f FP7-ENERGY-2013-1
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Fettkether, William
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Stuckenberg, Silvan
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Berghus, Debbie
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Martin, Steve W.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 5
|u fzj
700 1 _ |a Bieker, Peter
|0 P:(DE-Juel1)180777
|b 6
|e Corresponding author
773 _ _ |a 10.1002/batt.202300478
|g Vol. 7, no. 3, p. e202300478
|0 PERI:(DE-600)2897248-X
|n 3
|p e202300478
|t Batteries & supercaps
|v 7
|y 2024
|x 2566-6223
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1024998/files/Batteries%20Supercaps%20-%202024%20-%20Herbers%20-%20Converting%20a%20Commercial%20Separator%20into%20a%20Thin%E2%80%90film%20Multi%E2%80%90Layer%20Hybrid%20Solid.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1024998/files/Batteries%20Supercaps%20-%202024%20-%20Herbers%20-%20Converting%20a%20Commercial%20Separator%20into%20a%20Thin%E2%80%90film%20Multi%E2%80%90Layer%20Hybrid%20Solid.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1024998/files/Batteries%20Supercaps%20-%202024%20-%20Herbers%20-%20Converting%20a%20Commercial%20Separator%20into%20a%20Thin%E2%80%90film%20Multi%E2%80%90Layer%20Hybrid%20Solid.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1024998/files/Batteries%20Supercaps%20-%202024%20-%20Herbers%20-%20Converting%20a%20Commercial%20Separator%20into%20a%20Thin%E2%80%90film%20Multi%E2%80%90Layer%20Hybrid%20Solid.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1024998/files/Batteries%20Supercaps%20-%202024%20-%20Herbers%20-%20Converting%20a%20Commercial%20Separator%20into%20a%20Thin%E2%80%90film%20Multi%E2%80%90Layer%20Hybrid%20Solid.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1024998
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)166130
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)180777
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-25
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2023-08-25
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-25
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BATTERIES SUPERCAPS : 2022
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-07
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b BATTERIES SUPERCAPS : 2022
|d 2025-01-07
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21