001024999 001__ 1024999
001024999 005__ 20250930132713.0
001024999 0247_ $$2doi$$a10.1007/s10008-023-05792-4
001024999 0247_ $$2ISSN$$a1432-8488
001024999 0247_ $$2ISSN$$a1433-0768
001024999 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-02593
001024999 0247_ $$2WOS$$aWOS:001140428000001
001024999 037__ $$aFZJ-2024-02593
001024999 082__ $$a540
001024999 1001_ $$0P:(DE-Juel1)181055$$aStolz, Lukas$$b0
001024999 245__ $$aPractical relevance of charge transfer resistance at the Li metal electrode|electrolyte interface in batteries?
001024999 260__ $$aNew York$$bSpringer$$c2025
001024999 3367_ $$2DRIVER$$aarticle
001024999 3367_ $$2DataCite$$aOutput Types/Journal article
001024999 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1758529601_16665
001024999 3367_ $$2BibTeX$$aARTICLE
001024999 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001024999 3367_ $$00$$2EndNote$$aJournal Article
001024999 500__ $$aUnterstützt durch BMBF Grants: MEET Hi-End III (03XP0258A) und als Teil des ExcellBattMat Clusters.
001024999 520__ $$aThe theoretically possible energy and power densities of rechargeable batteries are practically limited by resistances as these lead to overvoltages, particularly pronounced at kinetically harsher conditions, i.e., high currents and/or low temperature. Charge transfer resistance (Rct), being a major type of resistance alongside with Ohmic (RΩ) and mass transport (Rmt), is related with the activation hindrance of electrochemical reactions. Its practical relevance is discussed within this work via analyzing cells with the galvanostatic/constant current (CC) technique. Rct at Li|electrolyte interfaces is shown to be relevantly impacted by electrode–electrolyte interphases; implying the electrolyte type, as well. While solid polymer electrolytes (SPEs), e.g., based on poly(ethylene) oxide (PEO), show negligible Rct, it is evident for commercial liquid electrolytes and readily increase during storage. Given the asymptotic overvoltage vs. current behavior of Rct, obeying Butler-Volmer equation, Rct gets less relevant at enhanced currents, as experimentally validated, finally pointing to the dominance of RΩ and (depending on system) Rmt in the overall resistance.
001024999 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001024999 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001024999 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b1$$ufzj
001024999 7001_ $$0P:(DE-Juel1)171865$$aKasnatscheew, Johannes$$b2$$eCorresponding author
001024999 773__ $$0PERI:(DE-600)1478940-1$$a10.1007/s10008-023-05792-4$$p4181-4186$$tJournal of solid state electrochemistry$$v29$$x1432-8488$$y2025
001024999 8564_ $$uhttps://juser.fz-juelich.de/record/1024999/files/s10008-023-05792-4.pdf$$yOpenAccess
001024999 909CO $$ooai:juser.fz-juelich.de:1024999$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001024999 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b1$$kFZJ
001024999 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171865$$aForschungszentrum Jülich$$b2$$kFZJ
001024999 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001024999 9141_ $$y2025
001024999 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21
001024999 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-21
001024999 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001024999 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-21
001024999 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ SOLID STATE ELECTR : 2022$$d2023-10-21
001024999 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-21
001024999 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2023-10-21$$wger
001024999 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21
001024999 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-21
001024999 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001024999 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-21
001024999 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-21
001024999 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21
001024999 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21
001024999 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001024999 980__ $$ajournal
001024999 980__ $$aVDB
001024999 980__ $$aUNRESTRICTED
001024999 980__ $$aI:(DE-Juel1)IEK-12-20141217
001024999 9801_ $$aFullTexts
001024999 981__ $$aI:(DE-Juel1)IMD-4-20141217