001025004 001__ 1025004
001025004 005__ 20250204113833.0
001025004 0247_ $$2doi$$a10.1039/D3CP04965E
001025004 0247_ $$2ISSN$$a1463-9076
001025004 0247_ $$2ISSN$$a1463-9084
001025004 0247_ $$2pmid$$a38206350
001025004 0247_ $$2WOS$$aWOS:001141097500001
001025004 037__ $$aFZJ-2024-02598
001025004 082__ $$a540
001025004 1001_ $$aTomar, Anubha$$b0
001025004 245__ $$aBoosting the high-rate performance of lithium-ion battery anodes using MnCo 2 O 4 /Co 3 O 4 nanocomposite interfaces
001025004 260__ $$aCambridge$$bRSC Publ.$$c2024
001025004 3367_ $$2DRIVER$$aarticle
001025004 3367_ $$2DataCite$$aOutput Types/Journal article
001025004 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712764979_24401
001025004 3367_ $$2BibTeX$$aARTICLE
001025004 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001025004 3367_ $$00$$2EndNote$$aJournal Article
001025004 520__ $$aHerein, a mesoporous MnCo2O4/Co3O4 nanocomposite was fabricated using a polyvinylpyrrolidone (PVP)-assisted hydrothermal synthesis method by maintaining only the non-stoichiometric ratio of Mn and Co (2 : 6), leading to an extra phase of Co3O4 coupled with MnCo2O4. Microstructural analysis showed that the obtained sample has a uniform nanowire-like morphology composed of interconnected nanoparticles. The stoichiometric ratio (2 : 4) was maintained to synthesize pure MnCo2O4 for comparative analysis. However, the obtained structure of pure MnCo2O4 was found to be irregular and fragile. After their employment as anode-active materials, the nanocomposite electrode showed superior high rate capability (1043.8 mA h g−1 at 5C) and long-term cycling stability (773.6 mA h g−1 after 500 cycles at 0.5C) in comparison to the pure MnCo2O4 electrode (771.5 mA h g−1 at 5C and 638.9 mA h g−1 at 0.5C after 500 cycles). It was believed that the extra phase of Co3O4 may also participate in the electrochemical reactions due to its high electrochemically active nature. Benefiting from the appealing architectural features and striking synergistic effect, the integrated MnCo2O4/Co3O4 nanocomposite anode exhibits excellent electrochemical properties and high cycle stability for LIBs.
001025004 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001025004 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001025004 7001_ $$aVankani, Chirag$$b1
001025004 7001_ $$00000-0001-8526-3923$$aSingh, Satendra Pal$$b2
001025004 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b3$$ufzj
001025004 7001_ $$00000-0003-0299-4355$$aRai, Alok Kumar$$b4$$eCorresponding author
001025004 773__ $$0PERI:(DE-600)1476244-4$$a10.1039/D3CP04965E$$gVol. 26, no. 4, p. 3516 - 3524$$n4$$p3516 - 3524$$tPhysical chemistry, chemical physics$$v26$$x1463-9076$$y2024
001025004 8564_ $$uhttps://juser.fz-juelich.de/record/1025004/files/d3cp04965e.pdf$$yRestricted
001025004 8564_ $$uhttps://juser.fz-juelich.de/record/1025004/files/d3cp04965e.gif?subformat=icon$$xicon$$yRestricted
001025004 8564_ $$uhttps://juser.fz-juelich.de/record/1025004/files/d3cp04965e.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
001025004 8564_ $$uhttps://juser.fz-juelich.de/record/1025004/files/d3cp04965e.jpg?subformat=icon-180$$xicon-180$$yRestricted
001025004 8564_ $$uhttps://juser.fz-juelich.de/record/1025004/files/d3cp04965e.jpg?subformat=icon-640$$xicon-640$$yRestricted
001025004 909CO $$ooai:juser.fz-juelich.de:1025004$$pVDB
001025004 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b3$$kFZJ
001025004 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001025004 9141_ $$y2024
001025004 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-21
001025004 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-21
001025004 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-09$$wger
001025004 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-09
001025004 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-09
001025004 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-09
001025004 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-09
001025004 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-09
001025004 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS CHEM CHEM PHYS : 2022$$d2024-12-09
001025004 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-09
001025004 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001025004 980__ $$ajournal
001025004 980__ $$aVDB
001025004 980__ $$aI:(DE-Juel1)IEK-12-20141217
001025004 980__ $$aUNRESTRICTED
001025004 981__ $$aI:(DE-Juel1)IMD-4-20141217