001     1025006
005     20250204113833.0
024 7 _ |a 10.1016/j.est.2023.109941
|2 doi
024 7 _ |a 2352-152X
|2 ISSN
024 7 _ |a 2352-1538
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-02600
|2 datacite_doi
024 7 _ |a WOS:001140202400001
|2 WOS
037 _ _ |a FZJ-2024-02600
082 _ _ |a 333.7
100 1 _ |a Börner, Martin F.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Manufacturing cost comparison of tabless vs. standard electrodes for cylindrical lithium-ion batteries
260 _ _ |a Amsterdam [u.a.]
|c 2024
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1712748443_24401
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The introduction of the tabless electrode design for lithium-ion battery cells by Tesla in 2020 and its successful industrialisation for the 2022 Model Y marked a significant breakthrough in the realm of cylindrical cell designs for batteries. This innovative approach allowed for larger cell designs while maintaining optimal thermal performance through active cooling on the system level. While prior research has focused on the advantages of this tabless design in terms of thermal management, this work explores a distinct benefit during the electrode manufacturing process. Traditionally, cylindrical battery cells utilize an electrode coating method that leaves gaps on the electrode surface to accommodate tab welding. Consequently, the coating machine operates in an intermittent coating mode, leading to a substantial reduction in achievable coating speed. In contrast, the tabless electrode design enables the continuous deposition of the active material by the coating machine. This advancement results in a remarkable increase in the coating speed, exceeding 60 %, which more than compensates for the additional costs associated with laser cutting the edge of the tabless electrode. This paper demonstrates how the adoption of tabless electrodes in the manufacturing process leads to a considerable cost reduction, from 2.029 to 1.698 €/kWh, while maintaining all other factors constant. Although this cost reduction may appear modest concerning the total cell costs, the cumulative savings at the giga-factory scale become significant, making this advancement economically viable and impactful.
536 _ _ |a 1223 - Batteries in Application (POF4-122)
|0 G:(DE-HGF)POF4-1223
|c POF4-122
|f POF IV
|x 0
536 _ _ |a BMBF 03XP0334 - Model2Life- Modellbasierte Systemauslegung für 2nd-Life-Nutzungsszenarien von mobilen Batteriesystemen (03XP0334)
|0 G:(BMBF)03XP0334
|c 03XP0334
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Mohsseni, Ahmad M.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a De, Nilava
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Faber, Matthias
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Krause, Florian
|b 4
700 1 _ |a Li, Weihan
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Bihn, Stephan
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Ringbeck, Florian
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Sauer, Dirk Uwe
|0 P:(DE-Juel1)172625
|b 8
773 _ _ |a 10.1016/j.est.2023.109941
|g Vol. 77, p. 109941 -
|0 PERI:(DE-600)2826805-2
|p 109941 -
|t Journal of energy storage
|v 77
|y 2024
|x 2352-152X
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1025006/files/Manufacturing%20cost%20comparison%20of%20tabless%20vs.%20standard%20electrodes%20for%20cylindrical%20lithium-ion%20batteries.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1025006/files/Manufacturing%20cost%20comparison%20of%20tabless%20vs.%20standard%20electrodes%20for%20cylindrical%20lithium-ion%20batteries.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1025006/files/Manufacturing%20cost%20comparison%20of%20tabless%20vs.%20standard%20electrodes%20for%20cylindrical%20lithium-ion%20batteries.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1025006/files/Manufacturing%20cost%20comparison%20of%20tabless%20vs.%20standard%20electrodes%20for%20cylindrical%20lithium-ion%20batteries.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1025006/files/Manufacturing%20cost%20comparison%20of%20tabless%20vs.%20standard%20electrodes%20for%20cylindrical%20lithium-ion%20batteries.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1025006
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)172625
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1223
|x 0
914 1 _ |y 2024
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-26
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-21
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21