Hauptseite > Publikationsdatenbank > Visualizing Reaction Fronts and Transport Limitations in Solid‐State Li–S Batteries via Operando Neutron Imaging > print |
001 | 1025007 | ||
005 | 20250203103213.0 | ||
024 | 7 | _ | |a 10.1002/aenm.202203426 |2 doi |
024 | 7 | _ | |a 1614-6832 |2 ISSN |
024 | 7 | _ | |a 1614-6840 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2024-02601 |2 datacite_doi |
024 | 7 | _ | |a WOS:000950238400001 |2 WOS |
037 | _ | _ | |a FZJ-2024-02601 |
082 | _ | _ | |a 050 |
100 | 1 | _ | |a Bradbury, Robert |0 0000-0002-2073-578X |b 0 |
245 | _ | _ | |a Visualizing Reaction Fronts and Transport Limitations in Solid‐State Li–S Batteries via Operando Neutron Imaging |
260 | _ | _ | |a Weinheim |c 2023 |b Wiley-VCH |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1712750997_24402 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The exploitation of high-capacity conversion-type materials such as sulfur in solid-state secondary batteries is a dream combination for achieving improved battery safety and high energy density in the push toward a sustainable future. However, the exact reason behind the low rate-capability, bottlenecking further development of solid-state lithium–sulfur batteries, has not yet been determined. Here, using neutron imaging, the spatial distribution of lithium during cell operation is directly visualized and it is shown that sluggish macroscopic ion transport within the composite cathode is rate-limiting. Observing a reaction front propagating from the separator side toward the current collector confirms the detrimental influence of a low effective ionic conductivity. Furthermore, irreversibly concentrated lithium in the vicinity of the current collector, revealed via state-of-charge-dependent tomography, highlights a hitherto-overlooked loss mechanism triggered by sluggish effective ionic transport within a composite cathode. This discovery can be a cornerstone for future research on solid-state batteries, irrespective of the type of active material. |
536 | _ | _ | |a 1221 - Fundamentals and Materials (POF4-122) |0 G:(DE-HGF)POF4-1221 |c POF4-122 |f POF IV |x 0 |
536 | _ | _ | |a LISZUBA - Lithium-Schwefel-Feststoffbatterien als Zukunftsbatterie (03XP0115B) |0 G:(BMBF)03XP0115B |c 03XP0115B |x 1 |
588 | _ | _ | |a Dataset connected to DataCite |
700 | 1 | _ | |a Dewald, Georg F. |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Kraft, Marvin A. |0 P:(DE-Juel1)192207 |b 2 |u fzj |
700 | 1 | _ | |a Arlt, Tobias |0 0000-0002-0715-2213 |b 3 |
700 | 1 | _ | |a Kardjilov, Nikolay |0 0000-0002-0980-1440 |b 4 |
700 | 1 | _ | |a Janek, Jürgen |0 0000-0002-9221-4756 |b 5 |
700 | 1 | _ | |a Manke, Ingo |0 0000-0001-9795-5345 |b 6 |
700 | 1 | _ | |a Zeier, Wolfgang G. |0 P:(DE-Juel1)184735 |b 7 |
700 | 1 | _ | |a Ohno, Saneyuki |0 0000-0001-8192-996X |b 8 |e Corresponding author |
773 | _ | _ | |a 10.1002/aenm.202203426 |g Vol. 13, no. 17, p. 2203426 |0 PERI:(DE-600)2594556-7 |n 17 |p 2203426 |t Advanced energy materials |v 13 |y 2023 |x 1614-6832 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1025007/files/Advanced%20Energy%20Materials%20-%202023%20-%20Bradbury%20-%20Visualizing%20Reaction%20Fronts%20and%20Transport%20Limitations%20in%20Solid%E2%80%90State%20Li%20S.pdf |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1025007/files/Advanced%20Energy%20Materials%20-%202023%20-%20Bradbury%20-%20Visualizing%20Reaction%20Fronts%20and%20Transport%20Limitations%20in%20Solid%E2%80%90State%20Li%20S.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1025007/files/Advanced%20Energy%20Materials%20-%202023%20-%20Bradbury%20-%20Visualizing%20Reaction%20Fronts%20and%20Transport%20Limitations%20in%20Solid%E2%80%90State%20Li%20S.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1025007/files/Advanced%20Energy%20Materials%20-%202023%20-%20Bradbury%20-%20Visualizing%20Reaction%20Fronts%20and%20Transport%20Limitations%20in%20Solid%E2%80%90State%20Li%20S.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1025007/files/Advanced%20Energy%20Materials%20-%202023%20-%20Bradbury%20-%20Visualizing%20Reaction%20Fronts%20and%20Transport%20Limitations%20in%20Solid%E2%80%90State%20Li%20S.jpg?subformat=icon-640 |
909 | C | O | |o oai:juser.fz-juelich.de:1025007 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)192207 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)184735 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-122 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Elektrochemische Energiespeicherung |9 G:(DE-HGF)POF4-1221 |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2023-10-26 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-10-26 |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2023-10-26 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-26 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-26 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-10-26 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ADV ENERGY MATER : 2022 |d 2023-10-26 |
915 | _ | _ | |a IF >= 25 |0 StatID:(DE-HGF)9925 |2 StatID |b ADV ENERGY MATER : 2022 |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-26 |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-12-20141217 |k IEK-12 |l Helmholtz-Institut Münster Ionenleiter für Energiespeicher |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-12-20141217 |
981 | _ | _ | |a I:(DE-Juel1)IMD-4-20141217 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|