001025009 001__ 1025009 001025009 005__ 20250203103107.0 001025009 0247_ $$2doi$$a10.1002/anie.202303111 001025009 0247_ $$2ISSN$$a1433-7851 001025009 0247_ $$2ISSN$$a0570-0833 001025009 0247_ $$2ISSN$$a1521-3773 001025009 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-02603 001025009 0247_ $$2pmid$$a37069123 001025009 0247_ $$2WOS$$aWOS:000989585400001 001025009 037__ $$aFZJ-2024-02603 001025009 082__ $$a540 001025009 1001_ $$00000-0002-1670-1798$$aWrogemann, Jens Matthies$$b0$$eCorresponding author 001025009 245__ $$aOvercoming Diffusion Limitation of Faradaic Processes: Property‐Performance Relationships of 2D Conductive Metal‐Organic Framework Cu 3 (HHTP) 2 for Reversible Lithium‐Ion Storage 001025009 260__ $$aWeinheim$$bWiley-VCH$$c2023 001025009 3367_ $$2DRIVER$$aarticle 001025009 3367_ $$2DataCite$$aOutput Types/Journal article 001025009 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712763171_24400 001025009 3367_ $$2BibTeX$$aARTICLE 001025009 3367_ $$2ORCID$$aJOURNAL_ARTICLE 001025009 3367_ $$00$$2EndNote$$aJournal Article 001025009 500__ $$aGefördert durch MWIDE NRW “GrEEn”(313-W044A), 001025009 520__ $$aFaradaic reactions including charge transfer are often accompanied with diffusion limitation inside the bulk. Conductive two-dimensional frameworks (2D MOFs) with a fast ion transport can combine both—charge transfer and fast diffusion inside their porous structure. To study remaining diffusion limitations caused by particle morphology, different synthesis routes of Cu-2,3,6,7,10,11-hexahydroxytriphenylene (Cu3(HHTP)2), a copper-based 2D MOF, are used to obtain flake- and rod-like MOF particles. Both morphologies are systematically characterized and evaluated for redox-active Li+ ion storage. The redox mechanism is investigated by means of X-ray absorption spectroscopy, FTIR spectroscopy and in situ XRD. Both types are compared regarding kinetic properties for Li+ ion storage via cyclic voltammetry and impedance spectroscopy. A significant influence of particle morphology for 2D MOFs on kinetic aspects of electrochemical Li+ ion storage can be observed. This study opens the path for optimization of redox active porous structures to overcome diffusion limitations of Faradaic processes. 001025009 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0 001025009 588__ $$aDataset connected to DataCite 001025009 7001_ $$aLüther, Marco Joes$$b1 001025009 7001_ $$aBärmann, Peer$$b2 001025009 7001_ $$aLounasvuori, Mailis$$b3 001025009 7001_ $$aJaved, Ali$$b4 001025009 7001_ $$0P:(DE-HGF)0$$aTiemann, Michael$$b5 001025009 7001_ $$0P:(DE-HGF)0$$aGolnak, Ronny$$b6 001025009 7001_ $$0P:(DE-HGF)0$$aXiao, Jie$$b7 001025009 7001_ $$aPetit, Tristan$$b8 001025009 7001_ $$0P:(DE-HGF)0$$aPlacke, Tobias$$b9 001025009 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b10$$ufzj 001025009 773__ $$0PERI:(DE-600)2011836-3$$a10.1002/anie.202303111$$gVol. 62, no. 26, p. e202303111$$n26$$pe202303111$$tAngewandte Chemie$$v62$$x1433-7851$$y2023 001025009 8564_ $$uhttps://juser.fz-juelich.de/record/1025009/files/Angew%20Chem%20Int%20Ed%20-%202023%20-%20Wrogemann%20-%20Overcoming%20Diffusion%20Limitation%20of%20Faradaic%20Processes%20Property%E2%80%90Performance.pdf$$yOpenAccess 001025009 8564_ $$uhttps://juser.fz-juelich.de/record/1025009/files/Angew%20Chem%20Int%20Ed%20-%202023%20-%20Wrogemann%20-%20Overcoming%20Diffusion%20Limitation%20of%20Faradaic%20Processes%20Property%E2%80%90Performance.gif?subformat=icon$$xicon$$yOpenAccess 001025009 8564_ $$uhttps://juser.fz-juelich.de/record/1025009/files/Angew%20Chem%20Int%20Ed%20-%202023%20-%20Wrogemann%20-%20Overcoming%20Diffusion%20Limitation%20of%20Faradaic%20Processes%20Property%E2%80%90Performance.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 001025009 8564_ $$uhttps://juser.fz-juelich.de/record/1025009/files/Angew%20Chem%20Int%20Ed%20-%202023%20-%20Wrogemann%20-%20Overcoming%20Diffusion%20Limitation%20of%20Faradaic%20Processes%20Property%E2%80%90Performance.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 001025009 8564_ $$uhttps://juser.fz-juelich.de/record/1025009/files/Angew%20Chem%20Int%20Ed%20-%202023%20-%20Wrogemann%20-%20Overcoming%20Diffusion%20Limitation%20of%20Faradaic%20Processes%20Property%E2%80%90Performance.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 001025009 909CO $$ooai:juser.fz-juelich.de:1025009$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 001025009 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b10$$kFZJ 001025009 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0 001025009 9141_ $$y2024 001025009 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-19 001025009 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-19 001025009 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-08-19 001025009 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 001025009 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-19 001025009 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bANGEW CHEM INT EDIT : 2022$$d2023-08-19 001025009 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bANGEW CHEM INT EDIT : 2022$$d2023-08-19 001025009 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2023-08-19$$wger 001025009 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-19 001025009 915__ $$0StatID:(DE-HGF)1210$$2StatID$$aDBCoverage$$bIndex Chemicus$$d2023-08-19 001025009 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-19 001025009 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 001025009 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-19 001025009 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2023-08-19 001025009 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-19 001025009 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-19 001025009 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-08-19$$wger 001025009 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-19 001025009 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0 001025009 9801_ $$aFullTexts 001025009 980__ $$ajournal 001025009 980__ $$aVDB 001025009 980__ $$aUNRESTRICTED 001025009 980__ $$aI:(DE-Juel1)IEK-12-20141217 001025009 981__ $$aI:(DE-Juel1)IMD-4-20141217