001     1025009
005     20250203103107.0
024 7 _ |a 10.1002/anie.202303111
|2 doi
024 7 _ |a 1433-7851
|2 ISSN
024 7 _ |a 0570-0833
|2 ISSN
024 7 _ |a 1521-3773
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-02603
|2 datacite_doi
024 7 _ |a 37069123
|2 pmid
024 7 _ |a WOS:000989585400001
|2 WOS
037 _ _ |a FZJ-2024-02603
082 _ _ |a 540
100 1 _ |a Wrogemann, Jens Matthies
|0 0000-0002-1670-1798
|b 0
|e Corresponding author
245 _ _ |a Overcoming Diffusion Limitation of Faradaic Processes: Property‐Performance Relationships of 2D Conductive Metal‐Organic Framework Cu 3 (HHTP) 2 for Reversible Lithium‐Ion Storage
260 _ _ |a Weinheim
|c 2023
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1712763171_24400
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Gefördert durch MWIDE NRW “GrEEn”(313-W044A),
520 _ _ |a Faradaic reactions including charge transfer are often accompanied with diffusion limitation inside the bulk. Conductive two-dimensional frameworks (2D MOFs) with a fast ion transport can combine both—charge transfer and fast diffusion inside their porous structure. To study remaining diffusion limitations caused by particle morphology, different synthesis routes of Cu-2,3,6,7,10,11-hexahydroxytriphenylene (Cu3(HHTP)2), a copper-based 2D MOF, are used to obtain flake- and rod-like MOF particles. Both morphologies are systematically characterized and evaluated for redox-active Li+ ion storage. The redox mechanism is investigated by means of X-ray absorption spectroscopy, FTIR spectroscopy and in situ XRD. Both types are compared regarding kinetic properties for Li+ ion storage via cyclic voltammetry and impedance spectroscopy. A significant influence of particle morphology for 2D MOFs on kinetic aspects of electrochemical Li+ ion storage can be observed. This study opens the path for optimization of redox active porous structures to overcome diffusion limitations of Faradaic processes.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Lüther, Marco Joes
|b 1
700 1 _ |a Bärmann, Peer
|b 2
700 1 _ |a Lounasvuori, Mailis
|b 3
700 1 _ |a Javed, Ali
|b 4
700 1 _ |a Tiemann, Michael
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Golnak, Ronny
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Xiao, Jie
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Petit, Tristan
|b 8
700 1 _ |a Placke, Tobias
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 10
|u fzj
773 _ _ |a 10.1002/anie.202303111
|g Vol. 62, no. 26, p. e202303111
|0 PERI:(DE-600)2011836-3
|n 26
|p e202303111
|t Angewandte Chemie
|v 62
|y 2023
|x 1433-7851
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1025009/files/Angew%20Chem%20Int%20Ed%20-%202023%20-%20Wrogemann%20-%20Overcoming%20Diffusion%20Limitation%20of%20Faradaic%20Processes%20Property%E2%80%90Performance.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1025009/files/Angew%20Chem%20Int%20Ed%20-%202023%20-%20Wrogemann%20-%20Overcoming%20Diffusion%20Limitation%20of%20Faradaic%20Processes%20Property%E2%80%90Performance.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1025009/files/Angew%20Chem%20Int%20Ed%20-%202023%20-%20Wrogemann%20-%20Overcoming%20Diffusion%20Limitation%20of%20Faradaic%20Processes%20Property%E2%80%90Performance.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1025009/files/Angew%20Chem%20Int%20Ed%20-%202023%20-%20Wrogemann%20-%20Overcoming%20Diffusion%20Limitation%20of%20Faradaic%20Processes%20Property%E2%80%90Performance.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1025009/files/Angew%20Chem%20Int%20Ed%20-%202023%20-%20Wrogemann%20-%20Overcoming%20Diffusion%20Limitation%20of%20Faradaic%20Processes%20Property%E2%80%90Performance.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1025009
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)166130
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-08-19
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-19
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b ANGEW CHEM INT EDIT : 2022
|d 2023-08-19
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ANGEW CHEM INT EDIT : 2022
|d 2023-08-19
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2023-08-19
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1210
|2 StatID
|b Index Chemicus
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-19
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1200
|2 StatID
|b Chemical Reactions
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-19
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-08-19
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-19
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21