| 001 | 1025009 | ||
| 005 | 20250203103107.0 | ||
| 024 | 7 | _ | |a 10.1002/anie.202303111 |2 doi |
| 024 | 7 | _ | |a 1433-7851 |2 ISSN |
| 024 | 7 | _ | |a 0570-0833 |2 ISSN |
| 024 | 7 | _ | |a 1521-3773 |2 ISSN |
| 024 | 7 | _ | |a 10.34734/FZJ-2024-02603 |2 datacite_doi |
| 024 | 7 | _ | |a 37069123 |2 pmid |
| 024 | 7 | _ | |a WOS:000989585400001 |2 WOS |
| 037 | _ | _ | |a FZJ-2024-02603 |
| 082 | _ | _ | |a 540 |
| 100 | 1 | _ | |a Wrogemann, Jens Matthies |0 0000-0002-1670-1798 |b 0 |e Corresponding author |
| 245 | _ | _ | |a Overcoming Diffusion Limitation of Faradaic Processes: Property‐Performance Relationships of 2D Conductive Metal‐Organic Framework Cu 3 (HHTP) 2 for Reversible Lithium‐Ion Storage |
| 260 | _ | _ | |a Weinheim |c 2023 |b Wiley-VCH |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1712763171_24400 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 500 | _ | _ | |a Gefördert durch MWIDE NRW “GrEEn”(313-W044A), |
| 520 | _ | _ | |a Faradaic reactions including charge transfer are often accompanied with diffusion limitation inside the bulk. Conductive two-dimensional frameworks (2D MOFs) with a fast ion transport can combine both—charge transfer and fast diffusion inside their porous structure. To study remaining diffusion limitations caused by particle morphology, different synthesis routes of Cu-2,3,6,7,10,11-hexahydroxytriphenylene (Cu3(HHTP)2), a copper-based 2D MOF, are used to obtain flake- and rod-like MOF particles. Both morphologies are systematically characterized and evaluated for redox-active Li+ ion storage. The redox mechanism is investigated by means of X-ray absorption spectroscopy, FTIR spectroscopy and in situ XRD. Both types are compared regarding kinetic properties for Li+ ion storage via cyclic voltammetry and impedance spectroscopy. A significant influence of particle morphology for 2D MOFs on kinetic aspects of electrochemical Li+ ion storage can be observed. This study opens the path for optimization of redox active porous structures to overcome diffusion limitations of Faradaic processes. |
| 536 | _ | _ | |a 1221 - Fundamentals and Materials (POF4-122) |0 G:(DE-HGF)POF4-1221 |c POF4-122 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to DataCite |
| 700 | 1 | _ | |a Lüther, Marco Joes |b 1 |
| 700 | 1 | _ | |a Bärmann, Peer |b 2 |
| 700 | 1 | _ | |a Lounasvuori, Mailis |b 3 |
| 700 | 1 | _ | |a Javed, Ali |b 4 |
| 700 | 1 | _ | |a Tiemann, Michael |0 P:(DE-HGF)0 |b 5 |
| 700 | 1 | _ | |a Golnak, Ronny |0 P:(DE-HGF)0 |b 6 |
| 700 | 1 | _ | |a Xiao, Jie |0 P:(DE-HGF)0 |b 7 |
| 700 | 1 | _ | |a Petit, Tristan |b 8 |
| 700 | 1 | _ | |a Placke, Tobias |0 P:(DE-HGF)0 |b 9 |
| 700 | 1 | _ | |a Winter, Martin |0 P:(DE-Juel1)166130 |b 10 |u fzj |
| 773 | _ | _ | |a 10.1002/anie.202303111 |g Vol. 62, no. 26, p. e202303111 |0 PERI:(DE-600)2011836-3 |n 26 |p e202303111 |t Angewandte Chemie |v 62 |y 2023 |x 1433-7851 |
| 856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1025009/files/Angew%20Chem%20Int%20Ed%20-%202023%20-%20Wrogemann%20-%20Overcoming%20Diffusion%20Limitation%20of%20Faradaic%20Processes%20Property%E2%80%90Performance.pdf |
| 856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1025009/files/Angew%20Chem%20Int%20Ed%20-%202023%20-%20Wrogemann%20-%20Overcoming%20Diffusion%20Limitation%20of%20Faradaic%20Processes%20Property%E2%80%90Performance.gif?subformat=icon |
| 856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1025009/files/Angew%20Chem%20Int%20Ed%20-%202023%20-%20Wrogemann%20-%20Overcoming%20Diffusion%20Limitation%20of%20Faradaic%20Processes%20Property%E2%80%90Performance.jpg?subformat=icon-1440 |
| 856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1025009/files/Angew%20Chem%20Int%20Ed%20-%202023%20-%20Wrogemann%20-%20Overcoming%20Diffusion%20Limitation%20of%20Faradaic%20Processes%20Property%E2%80%90Performance.jpg?subformat=icon-180 |
| 856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1025009/files/Angew%20Chem%20Int%20Ed%20-%202023%20-%20Wrogemann%20-%20Overcoming%20Diffusion%20Limitation%20of%20Faradaic%20Processes%20Property%E2%80%90Performance.jpg?subformat=icon-640 |
| 909 | C | O | |o oai:juser.fz-juelich.de:1025009 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-Juel1)166130 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-122 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Elektrochemische Energiespeicherung |9 G:(DE-HGF)POF4-1221 |x 0 |
| 914 | 1 | _ | |y 2024 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-08-19 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-19 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2023-08-19 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-08-19 |
| 915 | _ | _ | |a IF >= 15 |0 StatID:(DE-HGF)9915 |2 StatID |b ANGEW CHEM INT EDIT : 2022 |d 2023-08-19 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ANGEW CHEM INT EDIT : 2022 |d 2023-08-19 |
| 915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2023-08-19 |w ger |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-19 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1210 |2 StatID |b Index Chemicus |d 2023-08-19 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-08-19 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-08-19 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1200 |2 StatID |b Chemical Reactions |d 2023-08-19 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-08-19 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-08-19 |
| 915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2023-08-19 |w ger |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-08-19 |
| 920 | 1 | _ | |0 I:(DE-Juel1)IEK-12-20141217 |k IEK-12 |l Helmholtz-Institut Münster Ionenleiter für Energiespeicher |x 0 |
| 980 | 1 | _ | |a FullTexts |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)IEK-12-20141217 |
| 981 | _ | _ | |a I:(DE-Juel1)IMD-4-20141217 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|