001     1025011
005     20250203103250.0
024 7 _ |a 10.1021/acs.chemmater.2c02639
|2 doi
024 7 _ |a 0897-4756
|2 ISSN
024 7 _ |a 1520-5002
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-02605
|2 datacite_doi
024 7 _ |a 36873624
|2 pmid
024 7 _ |a WOS:000928339400001
|2 WOS
037 _ _ |a FZJ-2024-02605
082 _ _ |a 540
100 1 _ |a Ying, Bixian
|b 0
245 _ _ |a Monitoring the Formation of Nickel-Poor and Nickel-Rich Oxide Cathode Materials for Lithium-Ion Batteries with Synchrotron Radiation
260 _ _ |a Washington, DC
|c 2023
|b American Chemical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1712752390_24402
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Unterstützt durch BMBF Projekt: 03XP0231
520 _ _ |a The syntheses of Ni-poor (NCM111, LiNi1/3Co1/3Mn1/3O2) and Ni-rich (NCM811 LiNi0.8Co0.1Mn0.1O2) lithium transition-metal oxides (space group R3̅m) from hydroxide precursors (Ni1/3Co1/3Mn1/3(OH)2, Ni0.8Co0.1Mn0.1(OH)2) are investigated using in situ synchrotron powder diffraction and near-edge X-ray absorption fine structure spectroscopy. The development of the layered structure of these two cathode materials proceeds via two utterly different reaction mechanisms. While the synthesis of NCM811 involves a rock salt-type intermediate phase, NCM111 reveals a layered structure throughout the entire synthesis. Moreover, the necessity and the impact of a preannealing step and a high-temperature holding step are discussed.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
536 _ _ |a EXISTAR - EXtending Interface Science To Atmospheric-pressure Reactions (950598)
|0 G:(EU-Grant)950598
|c 950598
|f ERC-2020-STG
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Fitzpatrick, Jack R.
|0 0000-0003-4704-9242
|b 1
700 1 _ |a Teng, Zhenjie
|b 2
700 1 _ |a Chen, Tianxiang
|b 3
700 1 _ |a Lo, Tsz Woon Benedict
|b 4
700 1 _ |a Siozios, Vassilios
|b 5
700 1 _ |a Murray, Claire A.
|0 0000-0002-8306-3634
|b 6
700 1 _ |a Brand, Helen E. A.
|b 7
700 1 _ |a Day, Sarah
|b 8
700 1 _ |a Tang, Chiu C.
|b 9
700 1 _ |a Weatherup, Robert S.
|0 0000-0002-3993-9045
|b 10
700 1 _ |a Merz, Michael
|0 0000-0002-7346-7176
|b 11
700 1 _ |a Nagel, Peter
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Schuppler, Stefan
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 14
|u fzj
700 1 _ |a Kleiner, Karin
|0 0000-0003-0203-440X
|b 15
|e Corresponding author
773 _ _ |a 10.1021/acs.chemmater.2c02639
|g Vol. 35, no. 4, p. 1514 - 1526
|0 PERI:(DE-600)1500399-1
|n 4
|p 1514 - 1526
|t Chemistry of materials
|v 35
|y 2023
|x 0897-4756
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1025011/files/ying-et-al-2023-monitoring-the-formation-of-nickel-poor-and-nickel-rich-oxide-cathode-materials-for-lithium-ion.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1025011/files/ying-et-al-2023-monitoring-the-formation-of-nickel-poor-and-nickel-rich-oxide-cathode-materials-for-lithium-ion.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1025011/files/ying-et-al-2023-monitoring-the-formation-of-nickel-poor-and-nickel-rich-oxide-cathode-materials-for-lithium-ion.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1025011/files/ying-et-al-2023-monitoring-the-formation-of-nickel-poor-and-nickel-rich-oxide-cathode-materials-for-lithium-ion.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1025011/files/ying-et-al-2023-monitoring-the-formation-of-nickel-poor-and-nickel-rich-oxide-cathode-materials-for-lithium-ion.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1025011
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-Juel1)166130
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-08-23
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-23
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CHEM MATER : 2022
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-23
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-23
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-23
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEM MATER : 2022
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-23
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-08-23
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-23
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21