001025014 001__ 1025014
001025014 005__ 20250203103324.0
001025014 0247_ $$2doi$$a10.1016/j.energy.2023.126647
001025014 0247_ $$2ISSN$$a0360-5442
001025014 0247_ $$2ISSN$$a1873-6785
001025014 0247_ $$2WOS$$aWOS:000920218100001
001025014 037__ $$aFZJ-2024-02608
001025014 082__ $$a600
001025014 1001_ $$00000-0002-5804-6656$$aLi, Xiaohui$$b0
001025014 245__ $$aElectric vehicle behavior modeling and applications in vehicle-grid integration: An overview
001025014 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2023
001025014 3367_ $$2DRIVER$$aarticle
001025014 3367_ $$2DataCite$$aOutput Types/Journal article
001025014 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712752544_24400
001025014 3367_ $$2BibTeX$$aARTICLE
001025014 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001025014 3367_ $$00$$2EndNote$$aJournal Article
001025014 500__ $$aZudem unterstützt durch das Projekt: “GrEEn”  (313-W044A)
001025014 520__ $$aThe increasing electric vehicle (EV) adoption in the context of transportation electrification and carbon neutrality pursuit brings both new challenges and opportunities for all the stakeholders in EV-grid integration. To fully unleash the potentials of EVs as flexible distributed energy storage to facilitate efficient EV-grid interactions, it is imperative to predict spatio-temporal distributions of EV charging demand, optimize charging infrastructure layout and implement smart charging scheduling schemes. Appropriate EV behavior modeling plays a fundamental role to realize these targets. This paper aims to provide a comprehensive review on EV behavior modeling and its applications in EV-grid integration algorithm development. Various models have been developed to describe EV usage pattern, charging decision making process and response to smart charging schemes. In particular, the existing usage pattern models including temporal, spatial and energy sub-models are expounded, and different sub-models of charging choice and response to smart charging are also presented. An EV behavior modeling paradigm is proposed to provide guidance for EV behavior model selection in different application scenarios by developing different portfolios of temporal, spatial, energy usage, charging choice and response models. Accordingly, enabling EV behavior modeling for EV charging demands prediction and smart charging scheduling is covered in details. This study provides in-depth behavioral insights and viable approaches to developing efficient EV behavior models for advancing EV-grid integration and provides perspectives towards future research directions.
001025014 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001025014 588__ $$aDataset connected to DataCite
001025014 7001_ $$aWang, Zhenpo$$b1
001025014 7001_ $$0P:(DE-Juel1)165179$$aZhang, Lei$$b2$$eCorresponding author
001025014 7001_ $$0P:(DE-HGF)0$$aSun, Fengchun$$b3
001025014 7001_ $$0P:(DE-HGF)0$$aCui, Dingsong$$b4
001025014 7001_ $$00000-0002-2763-659X$$aHecht, Christopher$$b5
001025014 7001_ $$00000-0003-2216-9432$$aFiggener, Jan$$b6
001025014 7001_ $$0P:(DE-Juel1)172625$$aSauer, Dirk Uwe$$b7
001025014 773__ $$0PERI:(DE-600)2019804-8$$a10.1016/j.energy.2023.126647$$gVol. 268, p. 126647 -$$p126647 -$$tEnergy$$v268$$x0360-5442$$y2023
001025014 8564_ $$uhttps://juser.fz-juelich.de/record/1025014/files/Electric%20vehicle%20behavior%20modeling%20and%20applications%20in%20vehicle-grid%20integration_%20An%20overview.pdf$$yRestricted
001025014 8564_ $$uhttps://juser.fz-juelich.de/record/1025014/files/Electric%20vehicle%20behavior%20modeling%20and%20applications%20in%20vehicle-grid%20integration_%20An%20overview.gif?subformat=icon$$xicon$$yRestricted
001025014 8564_ $$uhttps://juser.fz-juelich.de/record/1025014/files/Electric%20vehicle%20behavior%20modeling%20and%20applications%20in%20vehicle-grid%20integration_%20An%20overview.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
001025014 8564_ $$uhttps://juser.fz-juelich.de/record/1025014/files/Electric%20vehicle%20behavior%20modeling%20and%20applications%20in%20vehicle-grid%20integration_%20An%20overview.jpg?subformat=icon-180$$xicon-180$$yRestricted
001025014 8564_ $$uhttps://juser.fz-juelich.de/record/1025014/files/Electric%20vehicle%20behavior%20modeling%20and%20applications%20in%20vehicle-grid%20integration_%20An%20overview.jpg?subformat=icon-640$$xicon-640$$yRestricted
001025014 909CO $$ooai:juser.fz-juelich.de:1025014$$pVDB
001025014 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165179$$aForschungszentrum Jülich$$b2$$kFZJ
001025014 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172625$$aForschungszentrum Jülich$$b7$$kFZJ
001025014 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001025014 9141_ $$y2024
001025014 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-22$$wger
001025014 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-22
001025014 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-22
001025014 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-22
001025014 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-22
001025014 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-22
001025014 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-22
001025014 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERGY : 2022$$d2023-10-22
001025014 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-22
001025014 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-22
001025014 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-22
001025014 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bENERGY : 2022$$d2023-10-22
001025014 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001025014 980__ $$ajournal
001025014 980__ $$aVDB
001025014 980__ $$aI:(DE-Juel1)IEK-12-20141217
001025014 980__ $$aUNRESTRICTED
001025014 981__ $$aI:(DE-Juel1)IMD-4-20141217