001     1025014
005     20250203103324.0
024 7 _ |a 10.1016/j.energy.2023.126647
|2 doi
024 7 _ |a 0360-5442
|2 ISSN
024 7 _ |a 1873-6785
|2 ISSN
024 7 _ |a WOS:000920218100001
|2 WOS
037 _ _ |a FZJ-2024-02608
082 _ _ |a 600
100 1 _ |a Li, Xiaohui
|0 0000-0002-5804-6656
|b 0
245 _ _ |a Electric vehicle behavior modeling and applications in vehicle-grid integration: An overview
260 _ _ |a Amsterdam [u.a.]
|c 2023
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1712752544_24400
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Zudem unterstützt durch das Projekt: “GrEEn” (313-W044A)
520 _ _ |a The increasing electric vehicle (EV) adoption in the context of transportation electrification and carbon neutrality pursuit brings both new challenges and opportunities for all the stakeholders in EV-grid integration. To fully unleash the potentials of EVs as flexible distributed energy storage to facilitate efficient EV-grid interactions, it is imperative to predict spatio-temporal distributions of EV charging demand, optimize charging infrastructure layout and implement smart charging scheduling schemes. Appropriate EV behavior modeling plays a fundamental role to realize these targets. This paper aims to provide a comprehensive review on EV behavior modeling and its applications in EV-grid integration algorithm development. Various models have been developed to describe EV usage pattern, charging decision making process and response to smart charging schemes. In particular, the existing usage pattern models including temporal, spatial and energy sub-models are expounded, and different sub-models of charging choice and response to smart charging are also presented. An EV behavior modeling paradigm is proposed to provide guidance for EV behavior model selection in different application scenarios by developing different portfolios of temporal, spatial, energy usage, charging choice and response models. Accordingly, enabling EV behavior modeling for EV charging demands prediction and smart charging scheduling is covered in details. This study provides in-depth behavioral insights and viable approaches to developing efficient EV behavior models for advancing EV-grid integration and provides perspectives towards future research directions.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Wang, Zhenpo
|b 1
700 1 _ |a Zhang, Lei
|0 P:(DE-Juel1)165179
|b 2
|e Corresponding author
700 1 _ |a Sun, Fengchun
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Cui, Dingsong
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Hecht, Christopher
|0 0000-0002-2763-659X
|b 5
700 1 _ |a Figgener, Jan
|0 0000-0003-2216-9432
|b 6
700 1 _ |a Sauer, Dirk Uwe
|0 P:(DE-Juel1)172625
|b 7
773 _ _ |a 10.1016/j.energy.2023.126647
|g Vol. 268, p. 126647 -
|0 PERI:(DE-600)2019804-8
|p 126647 -
|t Energy
|v 268
|y 2023
|x 0360-5442
856 4 _ |u https://juser.fz-juelich.de/record/1025014/files/Electric%20vehicle%20behavior%20modeling%20and%20applications%20in%20vehicle-grid%20integration_%20An%20overview.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1025014/files/Electric%20vehicle%20behavior%20modeling%20and%20applications%20in%20vehicle-grid%20integration_%20An%20overview.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1025014/files/Electric%20vehicle%20behavior%20modeling%20and%20applications%20in%20vehicle-grid%20integration_%20An%20overview.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1025014/files/Electric%20vehicle%20behavior%20modeling%20and%20applications%20in%20vehicle-grid%20integration_%20An%20overview.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1025014/files/Electric%20vehicle%20behavior%20modeling%20and%20applications%20in%20vehicle-grid%20integration_%20An%20overview.jpg?subformat=icon-640
|x icon-640
|y Restricted
909 C O |o oai:juser.fz-juelich.de:1025014
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)165179
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)172625
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2024
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-10-22
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-22
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-10-22
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENERGY : 2022
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-22
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-22
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ENERGY : 2022
|d 2023-10-22
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21