001025015 001__ 1025015
001025015 005__ 20250203103332.0
001025015 0247_ $$2doi$$a10.1038/s41467-023-35920-7
001025015 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-02609
001025015 0247_ $$2pmid$$a36650152
001025015 0247_ $$2WOS$$aWOS:001003645200035
001025015 037__ $$aFZJ-2024-02609
001025015 082__ $$a500
001025015 1001_ $$aLiang, Ziteng$$b0
001025015 245__ $$aUnderstanding the failure process of sulfide-based all-solid-state lithium batteries via operando nuclear magnetic resonance spectroscopy
001025015 260__ $$a[London]$$bNature Publishing Group UK$$c2023
001025015 3367_ $$2DRIVER$$aarticle
001025015 3367_ $$2DataCite$$aOutput Types/Journal article
001025015 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712762315_24399
001025015 3367_ $$2BibTeX$$aARTICLE
001025015 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001025015 3367_ $$00$$2EndNote$$aJournal Article
001025015 520__ $$aThe performance of all-solid-state lithium metal batteries (SSLMBs) is affected by the presence of electrochemically inactive (i.e., electronically and/or ionically disconnected) lithium metal and solid electrolyte interphase (SEI), which are jointly termed inactive lithium. However, the differentiation and quantification of inactive lithium during cycling are challenging, and their lack limits the fundamental understanding of SSLMBs failure mechanisms. To shed some light on these crucial aspects, here, we propose operando nuclear magnetic resonance (NMR) spectroscopy measurements for real-time quantification and evolution-tracking of inactive lithium formed in SSLMBs. In particular, we examine four different sulfide-based solid electrolytes, namely, Li10GeP2S12, Li9.54Si1.74P1.44S11.7Cl0.3, Li6PS5Cl and Li7P3S11. We found that the chemistry of the solid electrolyte influences the activity of lithium. Furthermore, we demonstrate that electronically disconnected lithium metal is mainly found in the interior of solid electrolytes, and ionically disconnected lithium metal is found at the negative electrode surface. Moreover, by monitoring the Li NMR signal during cell calendar ageing, we prove the faster corrosion rate of mossy/dendritic lithium than flat/homogeneous lithium in SSLMBs.
001025015 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001025015 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001025015 7001_ $$aXiang, Yuxuan$$b1
001025015 7001_ $$aWang, Kangjun$$b2
001025015 7001_ $$aZhu, Jianping$$b3
001025015 7001_ $$aJin, Yanting$$b4
001025015 7001_ $$aWang, Hongchun$$b5
001025015 7001_ $$0P:(DE-HGF)0$$aZheng, Bizhu$$b6
001025015 7001_ $$0P:(DE-HGF)0$$aChen, Zirong$$b7
001025015 7001_ $$00000-0003-1949-4488$$aTao, Mingming$$b8
001025015 7001_ $$00000-0001-9278-791X$$aLiu, Xiangsi$$b9
001025015 7001_ $$aWu, Yuqi$$b10
001025015 7001_ $$00000-0003-0075-0410$$aFu, Riqiang$$b11
001025015 7001_ $$00000-0002-8626-6381$$aWang, Chunsheng$$b12
001025015 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b13$$ufzj
001025015 7001_ $$00000-0002-9928-7165$$aYang, Yong$$b14$$eCorresponding author
001025015 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/s41467-023-35920-7$$gVol. 14, no. 1, p. 259$$n1$$p259$$tNature Communications$$v14$$x2041-1723$$y2023
001025015 8564_ $$uhttps://juser.fz-juelich.de/record/1025015/files/Understanding%20the%20failure%20process%20of%20sulfide-based%20all-solid-state%20lithium%20batteries%20via%20operando%20nuclear%20magnetic%20resonance%20spectroscopy.pdf$$yOpenAccess
001025015 8564_ $$uhttps://juser.fz-juelich.de/record/1025015/files/Understanding%20the%20failure%20process%20of%20sulfide-based%20all-solid-state%20lithium%20batteries%20via%20operando%20nuclear%20magnetic%20resonance%20spectroscopy.gif?subformat=icon$$xicon$$yOpenAccess
001025015 8564_ $$uhttps://juser.fz-juelich.de/record/1025015/files/Understanding%20the%20failure%20process%20of%20sulfide-based%20all-solid-state%20lithium%20batteries%20via%20operando%20nuclear%20magnetic%20resonance%20spectroscopy.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001025015 8564_ $$uhttps://juser.fz-juelich.de/record/1025015/files/Understanding%20the%20failure%20process%20of%20sulfide-based%20all-solid-state%20lithium%20batteries%20via%20operando%20nuclear%20magnetic%20resonance%20spectroscopy.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001025015 8564_ $$uhttps://juser.fz-juelich.de/record/1025015/files/Understanding%20the%20failure%20process%20of%20sulfide-based%20all-solid-state%20lithium%20batteries%20via%20operando%20nuclear%20magnetic%20resonance%20spectroscopy.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001025015 909CO $$ooai:juser.fz-juelich.de:1025015$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001025015 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b13$$kFZJ
001025015 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001025015 9141_ $$y2024
001025015 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-29
001025015 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2023-08-29
001025015 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2023-08-29
001025015 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-05-02T09:09:09Z
001025015 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-08-29
001025015 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-29
001025015 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-29
001025015 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-29
001025015 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-29
001025015 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-29
001025015 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-29
001025015 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT COMMUN : 2022$$d2023-08-29
001025015 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-05-02T09:09:09Z
001025015 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001025015 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-29
001025015 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-29
001025015 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001025015 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNAT COMMUN : 2022$$d2023-08-29
001025015 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-29
001025015 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2023-05-02T09:09:09Z
001025015 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-29
001025015 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-08-29
001025015 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001025015 9801_ $$aFullTexts
001025015 980__ $$ajournal
001025015 980__ $$aVDB
001025015 980__ $$aUNRESTRICTED
001025015 980__ $$aI:(DE-Juel1)IEK-12-20141217
001025015 981__ $$aI:(DE-Juel1)IMD-4-20141217