Home > Publications database > Understanding the failure process of sulfide-based all-solid-state lithium batteries via operando nuclear magnetic resonance spectroscopy > print |
001 | 1025015 | ||
005 | 20250203103332.0 | ||
024 | 7 | _ | |a 10.1038/s41467-023-35920-7 |2 doi |
024 | 7 | _ | |a 10.34734/FZJ-2024-02609 |2 datacite_doi |
024 | 7 | _ | |a 36650152 |2 pmid |
024 | 7 | _ | |a WOS:001003645200035 |2 WOS |
037 | _ | _ | |a FZJ-2024-02609 |
082 | _ | _ | |a 500 |
100 | 1 | _ | |a Liang, Ziteng |b 0 |
245 | _ | _ | |a Understanding the failure process of sulfide-based all-solid-state lithium batteries via operando nuclear magnetic resonance spectroscopy |
260 | _ | _ | |a [London] |c 2023 |b Nature Publishing Group UK |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1712762315_24399 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The performance of all-solid-state lithium metal batteries (SSLMBs) is affected by the presence of electrochemically inactive (i.e., electronically and/or ionically disconnected) lithium metal and solid electrolyte interphase (SEI), which are jointly termed inactive lithium. However, the differentiation and quantification of inactive lithium during cycling are challenging, and their lack limits the fundamental understanding of SSLMBs failure mechanisms. To shed some light on these crucial aspects, here, we propose operando nuclear magnetic resonance (NMR) spectroscopy measurements for real-time quantification and evolution-tracking of inactive lithium formed in SSLMBs. In particular, we examine four different sulfide-based solid electrolytes, namely, Li10GeP2S12, Li9.54Si1.74P1.44S11.7Cl0.3, Li6PS5Cl and Li7P3S11. We found that the chemistry of the solid electrolyte influences the activity of lithium. Furthermore, we demonstrate that electronically disconnected lithium metal is mainly found in the interior of solid electrolytes, and ionically disconnected lithium metal is found at the negative electrode surface. Moreover, by monitoring the Li NMR signal during cell calendar ageing, we prove the faster corrosion rate of mossy/dendritic lithium than flat/homogeneous lithium in SSLMBs. |
536 | _ | _ | |a 1221 - Fundamentals and Materials (POF4-122) |0 G:(DE-HGF)POF4-1221 |c POF4-122 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Xiang, Yuxuan |b 1 |
700 | 1 | _ | |a Wang, Kangjun |b 2 |
700 | 1 | _ | |a Zhu, Jianping |b 3 |
700 | 1 | _ | |a Jin, Yanting |b 4 |
700 | 1 | _ | |a Wang, Hongchun |b 5 |
700 | 1 | _ | |a Zheng, Bizhu |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Chen, Zirong |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Tao, Mingming |0 0000-0003-1949-4488 |b 8 |
700 | 1 | _ | |a Liu, Xiangsi |0 0000-0001-9278-791X |b 9 |
700 | 1 | _ | |a Wu, Yuqi |b 10 |
700 | 1 | _ | |a Fu, Riqiang |0 0000-0003-0075-0410 |b 11 |
700 | 1 | _ | |a Wang, Chunsheng |0 0000-0002-8626-6381 |b 12 |
700 | 1 | _ | |a Winter, Martin |0 P:(DE-Juel1)166130 |b 13 |u fzj |
700 | 1 | _ | |a Yang, Yong |0 0000-0002-9928-7165 |b 14 |e Corresponding author |
773 | _ | _ | |a 10.1038/s41467-023-35920-7 |g Vol. 14, no. 1, p. 259 |0 PERI:(DE-600)2553671-0 |n 1 |p 259 |t Nature Communications |v 14 |y 2023 |x 2041-1723 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1025015/files/Understanding%20the%20failure%20process%20of%20sulfide-based%20all-solid-state%20lithium%20batteries%20via%20operando%20nuclear%20magnetic%20resonance%20spectroscopy.pdf |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1025015/files/Understanding%20the%20failure%20process%20of%20sulfide-based%20all-solid-state%20lithium%20batteries%20via%20operando%20nuclear%20magnetic%20resonance%20spectroscopy.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1025015/files/Understanding%20the%20failure%20process%20of%20sulfide-based%20all-solid-state%20lithium%20batteries%20via%20operando%20nuclear%20magnetic%20resonance%20spectroscopy.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1025015/files/Understanding%20the%20failure%20process%20of%20sulfide-based%20all-solid-state%20lithium%20batteries%20via%20operando%20nuclear%20magnetic%20resonance%20spectroscopy.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1025015/files/Understanding%20the%20failure%20process%20of%20sulfide-based%20all-solid-state%20lithium%20batteries%20via%20operando%20nuclear%20magnetic%20resonance%20spectroscopy.jpg?subformat=icon-640 |
909 | C | O | |o oai:juser.fz-juelich.de:1025015 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 13 |6 P:(DE-Juel1)166130 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-122 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Elektrochemische Energiespeicherung |9 G:(DE-HGF)POF4-1221 |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2023-05-02T09:09:09Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2023-08-29 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-08-29 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-08-29 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2023-08-29 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NAT COMMUN : 2022 |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2023-05-02T09:09:09Z |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2023-08-29 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a IF >= 15 |0 StatID:(DE-HGF)9915 |2 StatID |b NAT COMMUN : 2022 |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-08-29 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Peer review |d 2023-05-02T09:09:09Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-29 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2023-08-29 |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-12-20141217 |k IEK-12 |l Helmholtz-Institut Münster Ionenleiter für Energiespeicher |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-12-20141217 |
981 | _ | _ | |a I:(DE-Juel1)IMD-4-20141217 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|