001025018 001__ 1025018
001025018 005__ 20250204113833.0
001025018 0247_ $$2doi$$a10.1039/D3CP05089K
001025018 0247_ $$2ISSN$$a1463-9076
001025018 0247_ $$2ISSN$$a1463-9084
001025018 0247_ $$2pmid$$a38164803
001025018 0247_ $$2WOS$$aWOS:001134532100001
001025018 037__ $$aFZJ-2024-02612
001025018 082__ $$a540
001025018 1001_ $$00009-0002-3769-052X$$aSchuett, Judith$$b0
001025018 245__ $$aInterstitial or interstitialcy: effect of the cation size on the migration mechanism in NaSICON materials
001025018 260__ $$aCambridge$$bRSC Publ.$$c2024
001025018 3367_ $$2DRIVER$$aarticle
001025018 3367_ $$2DataCite$$aOutput Types/Journal article
001025018 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712765730_24401
001025018 3367_ $$2BibTeX$$aARTICLE
001025018 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001025018 3367_ $$00$$2EndNote$$aJournal Article
001025018 520__ $$aSodium superionic conductors (NaSICONs) with general formula NaM2A3O12 have attracted significant attention as solid electrolytes for all solid-state batteries owing to their remarkable room temperature ionic conductivity in the order of 10−3 S cm−1. Their flexible structural framework, which allows the incorporation of various aliovalent cations, affects the Na+ ion transport. However, establishing a straightforward correlation between Na+ mobility and NaSICON composition proves challenging due to competing influences such as framework alteration and stoichiometric changes of the cation substituents and thus the mobile Na+ ions. Therefore, we systematically investigate the NaSICON system across various Na1+xM2SixP3−xO12 compositions. We unravel and examine independently two key aspects impacting the Na+ ion transport in NaSICONs: structural factors determined by introduced M4+ framework cations and the substitution level (x). By employing DFT calculations, we explore the interstitial- and interstitialcy-like migration mechanisms, revealing that these mechanisms and the associated migration energies are primarily influenced by metastable transient states traversed during the Na+ ion migration. The stability of these transient states, in turn, depends on the spatial arrangement of the Na+ ions, the size of the M4+ cations defining the structural framework, and x. This study enhances our fundamental understanding of Na+ ion migration within NaSICONs across a wide range of compositions. The findings offer valuable insights into the microscopic aspects of NaSICON materials and provide essential guidance for prospective studies in this field.
001025018 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001025018 536__ $$0G:(GEPRIS)452855747$$aDFG project 452855747 - Bestimmung der ionischen Leitfähigkeit von kationenleitenden Elektrolyten mittels Kinetik Monte Carlo Simulationen (452855747)$$c452855747$$x1
001025018 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001025018 7001_ $$00009-0001-8610-8471$$aSchillings, Johanna$$b1
001025018 7001_ $$0P:(DE-Juel1)167130$$aNeitzel-Grieshammer, Steffen$$b2$$eCorresponding author
001025018 773__ $$0PERI:(DE-600)1476244-4$$a10.1039/D3CP05089K$$gVol. 26, no. 3, p. 2190 - 2204$$n3$$p2190 - 2204$$tPhysical chemistry, chemical physics$$v26$$x1463-9076$$y2024
001025018 8564_ $$uhttps://juser.fz-juelich.de/record/1025018/files/d3cp05089k.pdf$$yRestricted
001025018 8564_ $$uhttps://juser.fz-juelich.de/record/1025018/files/d3cp05089k.gif?subformat=icon$$xicon$$yRestricted
001025018 8564_ $$uhttps://juser.fz-juelich.de/record/1025018/files/d3cp05089k.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
001025018 8564_ $$uhttps://juser.fz-juelich.de/record/1025018/files/d3cp05089k.jpg?subformat=icon-180$$xicon-180$$yRestricted
001025018 8564_ $$uhttps://juser.fz-juelich.de/record/1025018/files/d3cp05089k.jpg?subformat=icon-640$$xicon-640$$yRestricted
001025018 909CO $$ooai:juser.fz-juelich.de:1025018$$pVDB
001025018 9101_ $$0I:(DE-588b)5008462-8$$60009-0002-3769-052X$$aForschungszentrum Jülich$$b0$$kFZJ
001025018 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001025018 9141_ $$y2024
001025018 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-21
001025018 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-21
001025018 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-09$$wger
001025018 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-09
001025018 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-09
001025018 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-09
001025018 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-09
001025018 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-09
001025018 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS CHEM CHEM PHYS : 2022$$d2024-12-09
001025018 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-09
001025018 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001025018 980__ $$ajournal
001025018 980__ $$aVDB
001025018 980__ $$aI:(DE-Juel1)IEK-12-20141217
001025018 980__ $$aUNRESTRICTED
001025018 981__ $$aI:(DE-Juel1)IMD-4-20141217