001025019 001__ 1025019
001025019 005__ 20240712113105.0
001025019 0247_ $$2doi$$a10.1016/j.cej.2024.149547
001025019 0247_ $$2ISSN$$a1385-8947
001025019 0247_ $$2ISSN$$a0300-9467
001025019 0247_ $$2ISSN$$a1873-3212
001025019 0247_ $$2ISSN$$a1873-5541
001025019 0247_ $$2WOS$$aWOS:001202517800001
001025019 037__ $$aFZJ-2024-02613
001025019 1001_ $$aMerso, Semaw Kebede$$b0
001025019 245__ $$aMultiple protective layers for suppressing Li dendrite growth and improving the cycle life of anode-free lithium metal batteries
001025019 260__ $$aAmsterdam$$bElsevier$$c2024
001025019 3367_ $$2DRIVER$$aarticle
001025019 3367_ $$2DataCite$$aOutput Types/Journal article
001025019 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712826126_17869
001025019 3367_ $$2BibTeX$$aARTICLE
001025019 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001025019 3367_ $$00$$2EndNote$$aJournal Article
001025019 520__ $$aAnode-free lithium metal batteries (AFLMBs) have sparked considerable attention in recent years because of their potential for high energy density; however, they suffer from severe Li dendrite growth and unstable solid electrolyte interphase (SEI), which typically result in rapid capacity decay. Herein, we demonstrate a long-life anode-free pouch cell by designing a dual-coating protective layer (Cu-Sn@SFPH) electrode with Sn-coated Cu (denoted as Cu-Sn) as the bottom layer and SrF2 nanoparticles strengthened by poly (vinylidene fluoride)-co-hexafluoropropylene (PVDF-HFP) as the top layer. The in-situ formed LiF-rich SEI enables fast Li+ transfer, while the lithiophilic Li-Sn and Li-Sr alloy layers serve as nucleation seeds for uniform Li deposition. The dual-coated Cu electrode in the Cu-Sn@SFPH||Li cell exhibits remarkable cycling stability for more than 3,200 h at a capacity of 2 mAh cm−2. The NCM111||Cu-Sn@SFPH pouch cell demonstrates outstanding performance with a capacity retention of 72.1 % and an average Coulombic efficiency (CE) of 99.9 % for 120 cycles. Under practical conditions, with NCM cathodes and a lean electrolyte volume, this design strategy opens a new approach to AFLMBs.
001025019 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001025019 536__ $$0G:(BMBF)13XP0304A$$aLiBEST2 - Lithium-Batterie-Konzepte mit hoher Energiedichte, Leistung und Sicherheit (13XP0304A)$$c13XP0304A$$x1
001025019 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001025019 7001_ $$aTekaligne, Teshager Mekonnen$$b1
001025019 7001_ $$aAdigo Weret, Misganaw$$b2
001025019 7001_ $$aShitaw, Kassie Nigus$$b3
001025019 7001_ $$00000-0002-2929-3965$$aNikodimos, Yosef$$b4
001025019 7001_ $$aYang, Sheng-Chiang$$b5
001025019 7001_ $$aMuche, Zabish Bilew$$b6
001025019 7001_ $$aTaklu, Bereket Woldegbreal$$b7
001025019 7001_ $$aHotasi, Boas Tua$$b8
001025019 7001_ $$0P:(DE-HGF)0$$aChang, Chia-Yu$$b9
001025019 7001_ $$0P:(DE-HGF)0$$aJiang, Shi-Kai$$b10
001025019 7001_ $$0P:(DE-Juel1)172047$$aBrunklaus, Gunther$$b11$$ufzj
001025019 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b12
001025019 7001_ $$00000-0003-1165-9444$$aWu, She-Huang$$b13
001025019 7001_ $$00000-0003-1494-2675$$aSu, Wei-Nien$$b14
001025019 7001_ $$aMou, Chung-Yuan$$b15
001025019 7001_ $$0P:(DE-Juel1)188933$$aHwang, Bing Joe$$b16$$eCorresponding author
001025019 773__ $$0PERI:(DE-600)2012137-4$$a10.1016/j.cej.2024.149547$$gVol. 485, p. 149547 -$$p149547 -$$tThe chemical engineering journal$$v485$$x1385-8947$$y2024
001025019 8564_ $$uhttps://juser.fz-juelich.de/record/1025019/files/Multiple%20protective%20layers%20for%20suppressing%20Li%20dendrite%20growth%20and%20improving%20the%20cycle%20life%20of%20anode-free%20lithium%20metal%20batteries.pdf$$yRestricted
001025019 8564_ $$uhttps://juser.fz-juelich.de/record/1025019/files/Multiple%20protective%20layers%20for%20suppressing%20Li%20dendrite%20growth%20and%20improving%20the%20cycle%20life%20of%20anode-free%20lithium%20metal%20batteries.gif?subformat=icon$$xicon$$yRestricted
001025019 8564_ $$uhttps://juser.fz-juelich.de/record/1025019/files/Multiple%20protective%20layers%20for%20suppressing%20Li%20dendrite%20growth%20and%20improving%20the%20cycle%20life%20of%20anode-free%20lithium%20metal%20batteries.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
001025019 8564_ $$uhttps://juser.fz-juelich.de/record/1025019/files/Multiple%20protective%20layers%20for%20suppressing%20Li%20dendrite%20growth%20and%20improving%20the%20cycle%20life%20of%20anode-free%20lithium%20metal%20batteries.jpg?subformat=icon-180$$xicon-180$$yRestricted
001025019 8564_ $$uhttps://juser.fz-juelich.de/record/1025019/files/Multiple%20protective%20layers%20for%20suppressing%20Li%20dendrite%20growth%20and%20improving%20the%20cycle%20life%20of%20anode-free%20lithium%20metal%20batteries.jpg?subformat=icon-640$$xicon-640$$yRestricted
001025019 909CO $$ooai:juser.fz-juelich.de:1025019$$pVDB
001025019 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172047$$aForschungszentrum Jülich$$b11$$kFZJ
001025019 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b12$$kFZJ
001025019 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001025019 9141_ $$y2024
001025019 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-08-23$$wger
001025019 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEM ENG J : 2022$$d2023-08-23
001025019 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-23
001025019 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-23
001025019 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-23
001025019 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-23
001025019 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-23
001025019 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-23
001025019 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-23
001025019 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-23
001025019 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-23
001025019 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-23
001025019 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-08-23
001025019 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bCHEM ENG J : 2022$$d2023-08-23
001025019 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001025019 980__ $$ajournal
001025019 980__ $$aVDB
001025019 980__ $$aI:(DE-Juel1)IEK-12-20141217
001025019 980__ $$aUNRESTRICTED
001025019 981__ $$aI:(DE-Juel1)IMD-4-20141217