Hauptseite > Publikationsdatenbank > Multiple protective layers for suppressing Li dendrite growth and improving the cycle life of anode-free lithium metal batteries > print |
001 | 1025019 | ||
005 | 20240712113105.0 | ||
024 | 7 | _ | |a 10.1016/j.cej.2024.149547 |2 doi |
024 | 7 | _ | |a 1385-8947 |2 ISSN |
024 | 7 | _ | |a 0300-9467 |2 ISSN |
024 | 7 | _ | |a 1873-3212 |2 ISSN |
024 | 7 | _ | |a 1873-5541 |2 ISSN |
024 | 7 | _ | |a WOS:001202517800001 |2 WOS |
037 | _ | _ | |a FZJ-2024-02613 |
100 | 1 | _ | |a Merso, Semaw Kebede |b 0 |
245 | _ | _ | |a Multiple protective layers for suppressing Li dendrite growth and improving the cycle life of anode-free lithium metal batteries |
260 | _ | _ | |a Amsterdam |c 2024 |b Elsevier |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1712826126_17869 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Anode-free lithium metal batteries (AFLMBs) have sparked considerable attention in recent years because of their potential for high energy density; however, they suffer from severe Li dendrite growth and unstable solid electrolyte interphase (SEI), which typically result in rapid capacity decay. Herein, we demonstrate a long-life anode-free pouch cell by designing a dual-coating protective layer (Cu-Sn@SFPH) electrode with Sn-coated Cu (denoted as Cu-Sn) as the bottom layer and SrF2 nanoparticles strengthened by poly (vinylidene fluoride)-co-hexafluoropropylene (PVDF-HFP) as the top layer. The in-situ formed LiF-rich SEI enables fast Li+ transfer, while the lithiophilic Li-Sn and Li-Sr alloy layers serve as nucleation seeds for uniform Li deposition. The dual-coated Cu electrode in the Cu-Sn@SFPH||Li cell exhibits remarkable cycling stability for more than 3,200 h at a capacity of 2 mAh cm−2. The NCM111||Cu-Sn@SFPH pouch cell demonstrates outstanding performance with a capacity retention of 72.1 % and an average Coulombic efficiency (CE) of 99.9 % for 120 cycles. Under practical conditions, with NCM cathodes and a lean electrolyte volume, this design strategy opens a new approach to AFLMBs. |
536 | _ | _ | |a 1221 - Fundamentals and Materials (POF4-122) |0 G:(DE-HGF)POF4-1221 |c POF4-122 |f POF IV |x 0 |
536 | _ | _ | |a LiBEST2 - Lithium-Batterie-Konzepte mit hoher Energiedichte, Leistung und Sicherheit (13XP0304A) |0 G:(BMBF)13XP0304A |c 13XP0304A |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Tekaligne, Teshager Mekonnen |b 1 |
700 | 1 | _ | |a Adigo Weret, Misganaw |b 2 |
700 | 1 | _ | |a Shitaw, Kassie Nigus |b 3 |
700 | 1 | _ | |a Nikodimos, Yosef |0 0000-0002-2929-3965 |b 4 |
700 | 1 | _ | |a Yang, Sheng-Chiang |b 5 |
700 | 1 | _ | |a Muche, Zabish Bilew |b 6 |
700 | 1 | _ | |a Taklu, Bereket Woldegbreal |b 7 |
700 | 1 | _ | |a Hotasi, Boas Tua |b 8 |
700 | 1 | _ | |a Chang, Chia-Yu |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Jiang, Shi-Kai |0 P:(DE-HGF)0 |b 10 |
700 | 1 | _ | |a Brunklaus, Gunther |0 P:(DE-Juel1)172047 |b 11 |u fzj |
700 | 1 | _ | |a Winter, Martin |0 P:(DE-Juel1)166130 |b 12 |
700 | 1 | _ | |a Wu, She-Huang |0 0000-0003-1165-9444 |b 13 |
700 | 1 | _ | |a Su, Wei-Nien |0 0000-0003-1494-2675 |b 14 |
700 | 1 | _ | |a Mou, Chung-Yuan |b 15 |
700 | 1 | _ | |a Hwang, Bing Joe |0 P:(DE-Juel1)188933 |b 16 |e Corresponding author |
773 | _ | _ | |a 10.1016/j.cej.2024.149547 |g Vol. 485, p. 149547 - |0 PERI:(DE-600)2012137-4 |p 149547 - |t The chemical engineering journal |v 485 |y 2024 |x 1385-8947 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1025019/files/Multiple%20protective%20layers%20for%20suppressing%20Li%20dendrite%20growth%20and%20improving%20the%20cycle%20life%20of%20anode-free%20lithium%20metal%20batteries.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1025019/files/Multiple%20protective%20layers%20for%20suppressing%20Li%20dendrite%20growth%20and%20improving%20the%20cycle%20life%20of%20anode-free%20lithium%20metal%20batteries.gif?subformat=icon |x icon |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1025019/files/Multiple%20protective%20layers%20for%20suppressing%20Li%20dendrite%20growth%20and%20improving%20the%20cycle%20life%20of%20anode-free%20lithium%20metal%20batteries.jpg?subformat=icon-1440 |x icon-1440 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1025019/files/Multiple%20protective%20layers%20for%20suppressing%20Li%20dendrite%20growth%20and%20improving%20the%20cycle%20life%20of%20anode-free%20lithium%20metal%20batteries.jpg?subformat=icon-180 |x icon-180 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1025019/files/Multiple%20protective%20layers%20for%20suppressing%20Li%20dendrite%20growth%20and%20improving%20the%20cycle%20life%20of%20anode-free%20lithium%20metal%20batteries.jpg?subformat=icon-640 |x icon-640 |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:1025019 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 11 |6 P:(DE-Juel1)172047 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 12 |6 P:(DE-Juel1)166130 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-122 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Elektrochemische Energiespeicherung |9 G:(DE-HGF)POF4-1221 |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2023-08-23 |w ger |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b CHEM ENG J : 2022 |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-08-23 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2023-08-23 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2023-08-23 |
915 | _ | _ | |a IF >= 15 |0 StatID:(DE-HGF)9915 |2 StatID |b CHEM ENG J : 2022 |d 2023-08-23 |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-12-20141217 |k IEK-12 |l Helmholtz-Institut Münster Ionenleiter für Energiespeicher |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IEK-12-20141217 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IMD-4-20141217 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|