001025041 001__ 1025041
001025041 005__ 20250203103455.0
001025041 0247_ $$2doi$$a10.1149/MA2023-0181090mtgabs
001025041 0247_ $$2ISSN$$a1091-8213
001025041 0247_ $$2ISSN$$a2151-2043
001025041 037__ $$aFZJ-2024-02634
001025041 082__ $$a540
001025041 1001_ $$0P:(DE-Juel1)187071$$aBorowec, Julian$$b0$$eCorresponding author
001025041 1112_ $$a243rd ECS Meeting$$cBoston$$d2023-05-28 - 2023-06-02$$wUSA
001025041 245__ $$aNanoelectrical Mapping of Carbon Nanofibers By Means of Peakforce Tunneling Atomic Force Microscopy
001025041 260__ $$c2023
001025041 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s1714556432_11807
001025041 3367_ $$033$$2EndNote$$aConference Paper
001025041 3367_ $$2BibTeX$$aINPROCEEDINGS
001025041 3367_ $$2DRIVER$$aconferenceObject
001025041 3367_ $$2DataCite$$aOutput Types/Conference Abstract
001025041 3367_ $$2ORCID$$aOTHER
001025041 520__ $$aElectrospun polyacrylonitril (PAN) based carbon nanofibers (CNFs) are promising candidates for applications in energy conversion and storage. This originates from their electrical properties,[1] and their relatively easy manufacturing from abundant and cheap material.[2] However, the utilization of PAN CNF mats in devices such as electrolyzers is currently limited by their low conductivities. Advanced nanoelectrical characterization methods, such as Conductive Atomic Force Microscopy (C-AFM),[3] give insights into nanoscale limitations of the CNF's conductivity. Revealing the limitations will help tailoring CNF's conductivity. Thereby, a rational CNF design for applications in energy devices will be enabled.In this work, morphology, structure and nanoelectrical properties of electrospun PAN CNF mats, which were carbonized at different temperatures, are investigated by means of PeakForce Tunneling Atomic Force Microscopy (PF TUNA, Bruker). Next to the fundamentals of PF TUNA, topography and current maps of PAN CNF networks are presented and critically discussed. Topography maps reveal relatively homogeneous CNFs, which are in line with the homogeneous currents detected across the CNF network. The detected current signals indicate electrically well-interconnected fibers within the mats. Consequently, poor fiber interconnections or heterogeneities are not the limiting factor for an ideal macroscopic conductivity. High resolution maps of CNFs show that a large fraction of the surface area is non-conductive and that the fraction of conductive domains depends critically on the carbonization temperature. The nanoelectrical currents detected by PF TUNA on CNFs carbonized at different temperatures correlate strongly to the respective macroscopic conductivities measured by the four point method.The obtained results show that PF Tuna is a powerful tool to correlate nano- and macroscale conductivities. Future investigations, especially with CNFs containing integrated additives, will provide significant insights into nano- and macroscale relations and pave the way towards CNFs with desired electrical properties.Literature:[1] Gehring et al., RSC Adv. 2019, 9 (47), 27231–27241.[2] Kretzschmar et al., ChemSusChem 2020, 13 (12), 3180–3191.[3] Butnoi et al., JMR&T 2021, 12, 2153–2167.
001025041 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001025041 536__ $$0G:(DE-HGF)POF4-1232$$a1232 - Power-based Fuels and Chemicals (POF4-123)$$cPOF4-123$$fPOF IV$$x1
001025041 536__ $$0G:(GEPRIS)390919832$$aDFG project 390919832 - EXC 2186: Das Fuel Science Center – Adaptive Umwandlungssysteme für erneuerbare Energie- und Kohlenstoffquellen (390919832)$$c390919832$$x2
001025041 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x3
001025041 536__ $$0G:(DE-Juel1)BMBF-03SF0627A$$aiNEW2.0 (BMBF-03SF0627A)$$cBMBF-03SF0627A$$x4
001025041 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001025041 7001_ $$0P:(DE-Juel1)178824$$aSelmert, Victor$$b1
001025041 7001_ $$0P:(DE-Juel1)171715$$aKretzschmar, Ansgar$$b2
001025041 7001_ $$0P:(DE-Juel1)190220$$aFries, Kai Sören$$b3
001025041 7001_ $$0P:(DE-Juel1)161208$$aTempel, Hermann$$b4
001025041 7001_ $$0P:(DE-Juel1)167581$$aHausen, Florian$$b5$$ufzj
001025041 773__ $$0PERI:(DE-600)2438749-6$$a10.1149/MA2023-0181090mtgabs$$gVol. MA2023-01, no. 8, p. 1090 - 1090$$x2151-2043$$y2023
001025041 909CO $$ooai:juser.fz-juelich.de:1025041$$pVDB
001025041 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187071$$aForschungszentrum Jülich$$b0$$kFZJ
001025041 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178824$$aForschungszentrum Jülich$$b1$$kFZJ
001025041 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171715$$aForschungszentrum Jülich$$b2$$kFZJ
001025041 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161208$$aForschungszentrum Jülich$$b4$$kFZJ
001025041 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167581$$aForschungszentrum Jülich$$b5$$kFZJ
001025041 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)167581$$aRWTH Aachen$$b5$$kRWTH
001025041 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001025041 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1232$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x1
001025041 9141_ $$y2024
001025041 920__ $$lyes
001025041 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
001025041 980__ $$aabstract
001025041 980__ $$aVDB
001025041 980__ $$aI:(DE-Juel1)IEK-9-20110218
001025041 980__ $$aUNRESTRICTED
001025041 981__ $$aI:(DE-Juel1)IET-1-20110218