001     1025041
005     20250203103455.0
024 7 _ |a 10.1149/MA2023-0181090mtgabs
|2 doi
024 7 _ |a 1091-8213
|2 ISSN
024 7 _ |a 2151-2043
|2 ISSN
037 _ _ |a FZJ-2024-02634
082 _ _ |a 540
100 1 _ |a Borowec, Julian
|0 P:(DE-Juel1)187071
|b 0
|e Corresponding author
111 2 _ |a 243rd ECS Meeting
|c Boston
|d 2023-05-28 - 2023-06-02
|w USA
245 _ _ |a Nanoelectrical Mapping of Carbon Nanofibers By Means of Peakforce Tunneling Atomic Force Microscopy
260 _ _ |c 2023
336 7 _ |a Abstract
|b abstract
|m abstract
|0 PUB:(DE-HGF)1
|s 1714556432_11807
|2 PUB:(DE-HGF)
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Abstract
|2 DataCite
336 7 _ |a OTHER
|2 ORCID
520 _ _ |a Electrospun polyacrylonitril (PAN) based carbon nanofibers (CNFs) are promising candidates for applications in energy conversion and storage. This originates from their electrical properties,[1] and their relatively easy manufacturing from abundant and cheap material.[2] However, the utilization of PAN CNF mats in devices such as electrolyzers is currently limited by their low conductivities. Advanced nanoelectrical characterization methods, such as Conductive Atomic Force Microscopy (C-AFM),[3] give insights into nanoscale limitations of the CNF's conductivity. Revealing the limitations will help tailoring CNF's conductivity. Thereby, a rational CNF design for applications in energy devices will be enabled.In this work, morphology, structure and nanoelectrical properties of electrospun PAN CNF mats, which were carbonized at different temperatures, are investigated by means of PeakForce Tunneling Atomic Force Microscopy (PF TUNA, Bruker). Next to the fundamentals of PF TUNA, topography and current maps of PAN CNF networks are presented and critically discussed. Topography maps reveal relatively homogeneous CNFs, which are in line with the homogeneous currents detected across the CNF network. The detected current signals indicate electrically well-interconnected fibers within the mats. Consequently, poor fiber interconnections or heterogeneities are not the limiting factor for an ideal macroscopic conductivity. High resolution maps of CNFs show that a large fraction of the surface area is non-conductive and that the fraction of conductive domains depends critically on the carbonization temperature. The nanoelectrical currents detected by PF TUNA on CNFs carbonized at different temperatures correlate strongly to the respective macroscopic conductivities measured by the four point method.The obtained results show that PF Tuna is a powerful tool to correlate nano- and macroscale conductivities. Future investigations, especially with CNFs containing integrated additives, will provide significant insights into nano- and macroscale relations and pave the way towards CNFs with desired electrical properties.Literature:[1] Gehring et al., RSC Adv. 2019, 9 (47), 27231–27241.[2] Kretzschmar et al., ChemSusChem 2020, 13 (12), 3180–3191.[3] Butnoi et al., JMR&T 2021, 12, 2153–2167.
536 _ _ |a 1231 - Electrochemistry for Hydrogen (POF4-123)
|0 G:(DE-HGF)POF4-1231
|c POF4-123
|f POF IV
|x 0
536 _ _ |a 1232 - Power-based Fuels and Chemicals (POF4-123)
|0 G:(DE-HGF)POF4-1232
|c POF4-123
|f POF IV
|x 1
536 _ _ |a DFG project 390919832 - EXC 2186: Das Fuel Science Center – Adaptive Umwandlungssysteme für erneuerbare Energie- und Kohlenstoffquellen (390919832)
|0 G:(GEPRIS)390919832
|c 390919832
|x 2
536 _ _ |a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
|0 G:(DE-Juel1)HITEC-20170406
|c HITEC-20170406
|x 3
536 _ _ |a iNEW2.0 (BMBF-03SF0627A)
|0 G:(DE-Juel1)BMBF-03SF0627A
|c BMBF-03SF0627A
|x 4
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Selmert, Victor
|0 P:(DE-Juel1)178824
|b 1
700 1 _ |a Kretzschmar, Ansgar
|0 P:(DE-Juel1)171715
|b 2
700 1 _ |a Fries, Kai Sören
|0 P:(DE-Juel1)190220
|b 3
700 1 _ |a Tempel, Hermann
|0 P:(DE-Juel1)161208
|b 4
700 1 _ |a Hausen, Florian
|0 P:(DE-Juel1)167581
|b 5
|u fzj
773 _ _ |a 10.1149/MA2023-0181090mtgabs
|0 PERI:(DE-600)2438749-6
|y 2023
|g Vol. MA2023-01, no. 8, p. 1090 - 1090
|x 2151-2043
909 C O |o oai:juser.fz-juelich.de:1025041
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)187071
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)178824
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)171715
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)161208
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)167581
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 5
|6 P:(DE-Juel1)167581
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1231
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-123
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Chemische Energieträger
|9 G:(DE-HGF)POF4-1232
|x 1
914 1 _ |y 2024
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 _ _ |a abstract
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21