001025049 001__ 1025049
001025049 005__ 20250203103216.0
001025049 0247_ $$2doi$$a10.1002/smll.202370362
001025049 0247_ $$2ISSN$$a1613-6810
001025049 0247_ $$2ISSN$$a1613-6829
001025049 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-02637
001025049 037__ $$aFZJ-2024-02637
001025049 082__ $$a620
001025049 1001_ $$0P:(DE-HGF)0$$aGhaur, Adjmal$$b0
001025049 245__ $$aMolecular‐Cling‐Effect of Fluoroethylene Carbonate Characterized via Ethoxy(pentafluoro)cyclotriphosphazene on SiOx/C Anode Materials – A New Perspective for Formerly Sub‐Sufficient SEI Forming Additive Compounds (Small 44/2023)
001025049 260__ $$aWeinheim$$bWiley-VCH$$c2023
001025049 3367_ $$2DRIVER$$aarticle
001025049 3367_ $$2DataCite$$aOutput Types/Journal article
001025049 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712816893_19457
001025049 3367_ $$2BibTeX$$aARTICLE
001025049 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001025049 3367_ $$00$$2EndNote$$aJournal Article
001025049 500__ $$aUnterstützt durch BMBF Grant: “GrEEn” (313-W044A).
001025049 520__ $$aEffective electrolyte compositions are of primary importance in raising the performance of lithium-ion batteries (LIBs). Recently, fluorinated cyclic phosphazenes in combination with fluoroethylene carbonate (FEC) have been introduced as promising electrolyte additives, which can decompose to form an effective dense, uniform, and thin protective layer on the surface of electrodes. Although the basic electrochemical aspects of cyclic fluorinated phosphazenes combined with FEC were introduced, it is still unclear how these two compounds interact constructively during operation. This study investigates the complementary effect of FEC and ethoxy(pentafluoro)cyclotriphosphazene (EtPFPN) in aprotic organic electrolyte in LiNi0.5Co0.2Mn0.3O ∥ SiOx/C full cells. The formation mechanism of lithium ethyl methyl carbonate (LEMC)-EtPFPN interphasial intermediate products and the reaction mechanism of lithium alkoxide with EtPFPN are proposed and supported by Density Functional Theory calculations. A novel property of FEC is also discussed here, called molecular-cling-effect (MCE). To the best knowledge, the MCE has not been reported in the literature, although FEC belongs to one of the most investigated electrolyte additives. The beneficial MCE of FEC toward the sub-sufficient solid-electrolyte interphase forming additive compound EtPFPN is investigated via gas chromatography-mass spectrometry, gas chromatography high resolution-accurate mass spectrometry, in situ shell-isolated nanoparticle-enhanced Raman spectroscopy, and scanning electron microscopy.
001025049 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001025049 536__ $$0G:(BMBF)13XP5129$$aElektrolytformulierungen für Lithiumbatterien der nächsten Generation mit großer Energiedichte und hoher Beständigkeit (13XP5129)$$c13XP5129$$x1
001025049 588__ $$aDataset connected to DataCite
001025049 7001_ $$0P:(DE-Juel1)188450$$aPfeiffer, Felix$$b1$$ufzj
001025049 7001_ $$0P:(DE-Juel1)169877$$aDiddens, Diddo$$b2$$ufzj
001025049 7001_ $$aPeschel, Christoph$$b3
001025049 7001_ $$aDienwiebel, Iris$$b4
001025049 7001_ $$aDu, Leilei$$b5
001025049 7001_ $$aProfanter, Laurin$$b6
001025049 7001_ $$0P:(DE-Juel1)190810$$aWeiling, Matthias$$b7$$ufzj
001025049 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b8$$ufzj
001025049 7001_ $$0P:(DE-HGF)0$$aPlacke, Tobias$$b9
001025049 7001_ $$0P:(DE-HGF)0$$aNowak, Sascha$$b10
001025049 7001_ $$0P:(DE-HGF)0$$aBaghernejad, Masoud$$b11$$eCorresponding author
001025049 773__ $$0PERI:(DE-600)2168935-0$$a10.1002/smll.202370362$$gVol. 19, no. 44, p. 2370362$$n44$$p2370362$$tSmall$$v19$$x1613-6810$$y2023
001025049 8564_ $$uhttps://juser.fz-juelich.de/record/1025049/files/Small%20-%202023%20-%20Ghaur%20-%20Molecular%E2%80%90Cling%E2%80%90Effect%20of%20Fluoroethylene%20Carbonate%20Characterized%20via%20Ethoxy%20pentafluoro.pdf$$yOpenAccess
001025049 8564_ $$uhttps://juser.fz-juelich.de/record/1025049/files/Small%20-%202023%20-%20Ghaur%20-%20Molecular%E2%80%90Cling%E2%80%90Effect%20of%20Fluoroethylene%20Carbonate%20Characterized%20via%20Ethoxy%20pentafluoro.gif?subformat=icon$$xicon$$yOpenAccess
001025049 8564_ $$uhttps://juser.fz-juelich.de/record/1025049/files/Small%20-%202023%20-%20Ghaur%20-%20Molecular%E2%80%90Cling%E2%80%90Effect%20of%20Fluoroethylene%20Carbonate%20Characterized%20via%20Ethoxy%20pentafluoro.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001025049 8564_ $$uhttps://juser.fz-juelich.de/record/1025049/files/Small%20-%202023%20-%20Ghaur%20-%20Molecular%E2%80%90Cling%E2%80%90Effect%20of%20Fluoroethylene%20Carbonate%20Characterized%20via%20Ethoxy%20pentafluoro.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001025049 8564_ $$uhttps://juser.fz-juelich.de/record/1025049/files/Small%20-%202023%20-%20Ghaur%20-%20Molecular%E2%80%90Cling%E2%80%90Effect%20of%20Fluoroethylene%20Carbonate%20Characterized%20via%20Ethoxy%20pentafluoro.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001025049 909CO $$ooai:juser.fz-juelich.de:1025049$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001025049 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188450$$aForschungszentrum Jülich$$b1$$kFZJ
001025049 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169877$$aForschungszentrum Jülich$$b2$$kFZJ
001025049 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190810$$aForschungszentrum Jülich$$b7$$kFZJ
001025049 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b8$$kFZJ
001025049 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001025049 9141_ $$y2024
001025049 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-25
001025049 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-25
001025049 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSMALL : 2022$$d2023-10-25
001025049 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2023-10-25$$wger
001025049 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-25
001025049 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bSMALL : 2022$$d2023-10-25
001025049 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-25
001025049 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001025049 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-25
001025049 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-25
001025049 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-25
001025049 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001025049 9801_ $$aFullTexts
001025049 980__ $$ajournal
001025049 980__ $$aVDB
001025049 980__ $$aUNRESTRICTED
001025049 980__ $$aI:(DE-Juel1)IEK-12-20141217
001025049 981__ $$aI:(DE-Juel1)IMD-4-20141217