001025063 001__ 1025063
001025063 005__ 20250203103223.0
001025063 0247_ $$2doi$$a10.1149/MA2023-0283225mtgabs
001025063 0247_ $$2ISSN$$a1091-8213
001025063 0247_ $$2ISSN$$a2151-2043
001025063 037__ $$aFZJ-2024-02651
001025063 082__ $$a540
001025063 1001_ $$0P:(DE-Juel1)186842$$aYan, Peng$$b0$$ufzj
001025063 245__ $$aSynergistic Effect of Lithium (difluoromethanesulfonyl)(trifluoromethanesulfonyl)Imide (LiDFTFSI) and Vinylene Carbonate (VC) on High Performance of NMC811║Graphite Cells
001025063 260__ $$aPennington, NJ$$bSoc.$$c2023
001025063 3367_ $$2DRIVER$$aarticle
001025063 3367_ $$2DataCite$$aOutput Types/Journal article
001025063 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712827665_17869
001025063 3367_ $$2BibTeX$$aARTICLE
001025063 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001025063 3367_ $$00$$2EndNote$$aJournal Article
001025063 520__ $$aLithium-ion batteries (LIBs) have gained increasing importance in energy storage systems, driven by the growing demands of grid storage, automotive, and portable consumer applications. To meet the need for high energy density batteries, one promising approach involves the utilization of high capacity layered transition metal oxide cathodes, such as nickel-rich LiNi0.8Mn0.1Co0.1O2 (NMC811), which can deliver a high reversible specific capacity of over 180 mAh·g-1[1,2]. However, due to the structural and interfacial instability[3], nickel-rich NMC cathode still faces challenges in long-term galvanostatic cycling. For these reasons, design of novel electrolyte formulations, which enable formation of an effective cathode electrolyte interphase (CEI), is highly desirable. Recent studies have highlighted the cross-talk between the cathode and anode, indicating that the evolution of the solid electrolyte interphase (SEI) can impact the formation of the CEI[4]. Thus, establishing an effective SEI/CEI pair is essential for achieving long-term cycling of nickel-rich NMC cathode-based cells. Electrolyte optimization plays a crucial role in facilitating the formation of a desirable SEI/CEI pair, leading to an improved cell performance and longevity. Lithium (difluoromethanesulfonyl)(trifluoro-methanesulfonyl)imide (LiDFTFSI) has proven to be promising in solid-polymer-electrolyte batteries due to the good SEI/CEI formation ability and suppressed Al-dissolution[5]. Additionally, LiDFTFSI exhibits also good compatibility with Li-metal batteries[6], heralding promising applications in Li-ion batteries. However, there is lack of systematic research investigating the potential impact of LiDFTFSI on the cathode as well as on resulting CEI formation and dynamics.In this work, we demonstrated enhanced galvanostatic cycling performance of NMC811||graphite cells achieved by utilizing LiDFTFSI and lithium hexafluorophosphate (LiPF6) in a blended salt organic carbonate-based electrolyte formulation. Comprehensive electrochemical and post mortem analysis revealed that the LiDFTFSI alone can effectively mitigate the structural changes in the NMC811 electrode by facilitating the formation of modified CEI. However, the continued growth of an inhomogeneous CEI, caused by the cross-talk effect between electrodes, adversely affected long-term cycling stability. To address this, vinylene carbonate (VC) was introduced to the electrolyte. Synergistic effect with LiDFTFSI leads to the formation of effective and uniform SEI and CEI. As a result, 720 charge/discharge cycles were achieved in NMC811||graphite cells with LiDFTFSI and VC containing electrolytes at 1C while maintaining 80% state-of-health (SOH80%).References[1] R. Schmuch, R. Wagner, G. Hörpel, T. Placke, M. Winter, Nature Energy2018, 3, 267–278.[2] W. Xue, M. Huang, Y. Li, Y. G. Zhu, R. Gao, X. Xiao, W. Zhang, S. Li, G. Xu, Y. Yu, P. Li, J. Lopez, D. Yu, Y. Dong, W. Fan, Z. Shi, R. Xiong, C.-J. Sun, I. Hwang, W.-K. Lee, Y. Shao-Horn, J. A. Johnson, J. Li, Nature Energy2021, 6, 495–505.[3] K. Guo, S. Qi, H. Wang, J. Huang, M. Wu, Y. Yang, X. Li, Y. Ren, J. Ma, Small Science2022, 2, 2100107.[4] S. Fang, D. Jackson, M. L. Dreibelbis, T. F. Kuech, R. J. Hamers, Journal of Power Sources2018, 373, 184–192.[5] H. Zhang, U. Oteo, X. Judez, G. G. Eshetu, M. Martinez-Ibañez, J. Carrasco, C. Li, M. Armand, Joule2019, 3, 1689–1702.[6] L. Qiao, U. Oteo, M. Martinez-Ibañez, A. Santiago, R. Cid, E. Sanchez-Diez, E. Lobato, L. Meabe, M. Armand, H. Zhang, Nat. Mater.2022, 21, 455–462.
001025063 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001025063 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001025063 7001_ $$aShevchuk, Mykhailo$$b1
001025063 7001_ $$0P:(DE-Juel1)176954$$aWoelke, Christian$$b2
001025063 7001_ $$0P:(DE-Juel1)188450$$aPfeiffer, Felix$$b3$$ufzj
001025063 7001_ $$aBerghus, Debbie$$b4
001025063 7001_ $$0P:(DE-HGF)0$$aBaghernejad, Masoud$$b5
001025063 7001_ $$aRöschenthaler, Gerd-Volker$$b6
001025063 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b7
001025063 7001_ $$0P:(DE-Juel1)171204$$aCekic-Laskovic, Isidora$$b8$$ufzj
001025063 773__ $$0PERI:(DE-600)2438749-6$$a10.1149/MA2023-0283225mtgabs$$gVol. MA2023-02, no. 8, p. 3225 - 3225$$n8$$p3225 - 3225$$tMeeting abstracts$$vMA2023-02$$x1091-8213$$y2023
001025063 909CO $$ooai:juser.fz-juelich.de:1025063$$pVDB
001025063 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186842$$aForschungszentrum Jülich$$b0$$kFZJ
001025063 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176954$$aForschungszentrum Jülich$$b2$$kFZJ
001025063 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188450$$aForschungszentrum Jülich$$b3$$kFZJ
001025063 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b7$$kFZJ
001025063 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171204$$aForschungszentrum Jülich$$b8$$kFZJ
001025063 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001025063 9141_ $$y2024
001025063 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001025063 980__ $$ajournal
001025063 980__ $$aVDB
001025063 980__ $$aI:(DE-Juel1)IEK-12-20141217
001025063 980__ $$aUNRESTRICTED
001025063 981__ $$aI:(DE-Juel1)IMD-4-20141217