001025065 001__ 1025065
001025065 005__ 20250203103357.0
001025065 0247_ $$2doi$$a10.1149/MA2023-022199mtgabs
001025065 0247_ $$2ISSN$$a1091-8213
001025065 0247_ $$2ISSN$$a2151-2043
001025065 037__ $$aFZJ-2024-02653
001025065 082__ $$a540
001025065 1001_ $$0P:(DE-Juel1)181018$$aKrämer, Susanna$$b0
001025065 245__ $$aEutectic Mixtures As Highly Concentrated and Molten Electrolytes with Nearly Single-Ion Conducting Behavior
001025065 260__ $$aPennington, NJ$$bSoc.$$c2023
001025065 3367_ $$2DRIVER$$aarticle
001025065 3367_ $$2DataCite$$aOutput Types/Journal article
001025065 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712836333_20085
001025065 3367_ $$2BibTeX$$aARTICLE
001025065 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001025065 3367_ $$00$$2EndNote$$aJournal Article
001025065 500__ $$aHierbei handelt es sich lediglich um einen Abstract.
001025065 520__ $$aToday's state-of-the-art liquid electrolytes in lithium ion batteries (LIBs) have a high ionic conductivity and good performance regarding their cycle life. (1) However, they pose a safety risk due to their high vapor pressures and low thermal stability. (1) Furthermore, due to the limited electrochemical stability of the solvent, liquid electrolytes are not suitable for the application in high-voltage LIBs. (2) Molten salts, also called ionic liquids (IL), or highly concentrated electrolytes (HCE) have high lithium ion concentrations, where nearly every solvent molecule is coordinated. Due to this, there are strong ion interactions and the formation of ion clusters that lead to an increased lithium ion transference number of >0.5. (3) Therefore, they can represent an alternative in the field of liquid electrolytes. Additionally, HCE exhibit a higher thermal and electrochemical stability compared to dilute electrolytes and can improve the cycle performance in lithium metal batteries. (4, 5)McOwen etal. reported the coordination of lithium ions and crystalline structures in HCE of the binary mixtures of ethylene carbonate (EC) and lithium bis(trifluoromethane sulfonyl)imide (LiTFSI) with molar ratio up to 1:1. (6) Based on the concept of melting point depression as known from thermodynamics, room-temperature molten, highly concentrated electrolytes of a carbonate-based solvent with lithium sulfonyl imides were investigated. Instead of EC, the solvent pinacol carbonate (PIC) without acidic α-hydrogen atoms, but four bulky methyl groups was synthesized and used for eutectic mixtures, as the melting point of PIC is with 187 °C far above room-temperature. The physicochemical properties of these electrolytes are studied with respect to the different influence of lithium bis(fluorosulfonyl)imide and LiTFSI despite their same basic molecule structure. The focus will be on the electrochemical analysis by the means of the ionic conductivity, transference number and the electrochemical stability.In comparison to dilute liquid electrolytes the molten electrolytes show extremely high transference numbers, especially for the PIC-LiTFSI mixtures nearly a single-ion conducting behavior (0.9) is observed. This behavior can be explained by the formation of a 2D polymeric network within the HCE electrolyte as determined by crystallographic measurements in the solid state. Combined with the high electrochemical stability, a stable long-term cycling and dendrite suppression in symmetric lithium cells could be shown. Cycling in full cells with high-voltage cathode materials such as LiNi0.6Mn0.2Co0.2O2 (NMC622) or LiMn4O2 (LMO) against lithium metal anodes is applicable.References K. Xu, Chemical Reviews, 104(10), 4303–4417 (2004). J. Li, C. Ma, M. Chi, C. Liang and N. J. Dudney, Advanced Energy Materials, 5(4) (2015). K. M. Diederichsen, E. J. McShane and B. D. McCloskey, ACS ENERGY LETTERS, 2(11), 2563–2575 (2017). G. Jiang, F. Li, H. Wang, M. Wu, S. Qi, X. Liu, S. Yang and J. Ma, Small Struct., 2(5), 2000122 (2021). V. Nilsson, A. Kotronia, M. Lacey, K. Edstrom and P. Johansson, ACS Applied Energy Materials, 3(1), 200–207 (2020). D. W. McOwen, D. M. Seo, O. Borodin, J. Vatamanu, P. D. Boyle and W. A. Henderson, Energy & Environmental science, 7(1), 416–426 (2014).
001025065 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001025065 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001025065 7001_ $$aDaniliuc, Constantin G.$$b1
001025065 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b2
001025065 7001_ $$aWiemhöfer, Hans-Dieter$$b3
001025065 7001_ $$0P:(DE-HGF)0$$aGruenebaum, Mariano$$b4
001025065 773__ $$0PERI:(DE-600)2438749-6$$a10.1149/MA2023-022199mtgabs$$gVol. MA2023-02, no. 2, p. 199 - 199$$n2$$p199 - 199$$tMeeting abstracts$$vMA2023-02$$x1091-8213$$y2023
001025065 909CO $$ooai:juser.fz-juelich.de:1025065$$pVDB
001025065 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)181018$$aForschungszentrum Jülich$$b0$$kFZJ
001025065 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b2$$kFZJ
001025065 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001025065 9141_ $$y2024
001025065 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001025065 980__ $$ajournal
001025065 980__ $$aVDB
001025065 980__ $$aI:(DE-Juel1)IEK-12-20141217
001025065 980__ $$aUNRESTRICTED
001025065 981__ $$aI:(DE-Juel1)IMD-4-20141217