001025068 001__ 1025068
001025068 005__ 20250203103404.0
001025068 0247_ $$2doi$$a10.1149/MA2023-011400mtgabs
001025068 0247_ $$2ISSN$$a1091-8213
001025068 0247_ $$2ISSN$$a2151-2043
001025068 037__ $$aFZJ-2024-02656
001025068 082__ $$a540
001025068 1001_ $$00000-0002-9741-2989$$aBela, Marlena Maria$$b0
001025068 245__ $$aDual-Protective Artificial Layer on Lithium Metal Anodes for Improved Electrochemical Performance – an in-Depth Morphological and Electrochemical Characterization
001025068 260__ $$aPennington, NJ$$bSoc.$$c2023
001025068 3367_ $$2DRIVER$$aarticle
001025068 3367_ $$2DataCite$$aOutput Types/Journal article
001025068 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712827691_17869
001025068 3367_ $$2BibTeX$$aARTICLE
001025068 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001025068 3367_ $$00$$2EndNote$$aJournal Article
001025068 500__ $$aHierbei handelt es sich lediglich um einen Abstract.
001025068 520__ $$aThe energy density of traditional lithium ion batteries (LIB) based on graphite intercalation compounds as negative active material is approaching the theoretical limit and are restricting the increasing demand of high energy battery systems for various mobile and stationary applications.[1] Consequently, the implementation of active materials with high specific energies became prerequisite for future battery technologies. Therein, lithium metal is one of the most promising anode active materials to replace state-of-the-art graphite active materials, due to its high theoretical capacity and low electrode potential.[2]However, poor cycling performance, low Coulombic efficiency, and the uncontrollable Li dendrite growth during lithium electrodeposition/dissolution processes remain as predominant challenges.[3]Several approaches were proposed to eliminate dendrite formation by implementing a mechanically and electrochemically stable artificial solid electrolyte interphase or artificial protective coatings (aPC) by in-situ or ex-situ surface modifications.[4] These designed aPCs should feature an increased and uniform Li-ion flux, mechanical robustness and/or protection against electrolyte decomposition, during substantial volume changes upon electrodeposition/dissolution. However, aPCs fail to support long term cycling stability in lithium metal batteries since they cannot cover all requirements.[5] Therefore, it is crucial to design and understand dual- and multilayer system that address multiple aforementioned requisites.[6]In this contribution, a dual-protective artificial layer is constructed on Li metal by physical vapor deposition consisting of an intermetallic LiZn-layer, providing a uniform Li-ion flux, and an inorganic Li3N-layer, which is electron-blocking, thus reveal surface protective properties. In addition to electrochemical characterization, the Li electrodeposition/dissolution behavior was investigated by cryo-FIB/SEM analysis to unravel the mechanism behind the enhanced cycling stability in symmetrical Li||Li cells and cells with a layered oxide-based positive electrode.[1] R. Schmuch, R. Wagner, G. Hörpel, T. Placke, M. Winter, Nature Energy2018, 3, 267.[2] J. Liu, Z. Bao, Y. Cui, E. J. Dufek, J. B. Goodenough, P. Khalifah, Q. Li, B. Y. Liaw, P. Liu, A. Manthiram, Y. S. Meng, V. R. Subramanian, M. F. Toney, V. V. Viswanathan, M. S. Whittingham, J. Xiao, W. Xu, J. Yang, X.-Q. Yang, J.-G. Zhang, Nature Energy2019, 4, 180.[3] T. Placke, R. Kloepsch, S. Dühnen, M. Winter, Journal of Solid State Electrochemistry2017, 21, 1939.[4] N. Delaporte, Y. Wang, K. Zaghib, Frontiers in Materials2019, 6.[5] D. Lin, Y. Liu, Y. Cui, Nature Nanotechnology2017, 12, 194.[6] S. Lee, K.-s. Lee, S. Kim, K. Yoon, S. Han, M. H. Lee, Y. Ko, J. H. Noh, W. Kim, K. Kang, Science Advances2022, 8, 1.
001025068 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001025068 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001025068 7001_ $$0P:(DE-Juel1)195878$$aStan, Marian Cristian$$b1
001025068 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b2
001025068 7001_ $$0P:(DE-HGF)0$$aBörner, Markus$$b3
001025068 773__ $$0PERI:(DE-600)2438749-6$$a10.1149/MA2023-011400mtgabs$$gVol. MA2023-01, no. 1, p. 400 - 400$$n1$$p400 - 400$$tMeeting abstracts$$vMA2023-01$$x1091-8213$$y2023
001025068 909CO $$ooai:juser.fz-juelich.de:1025068$$pVDB
001025068 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)195878$$aForschungszentrum Jülich$$b1$$kFZJ
001025068 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b2$$kFZJ
001025068 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001025068 9141_ $$y2024
001025068 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001025068 980__ $$ajournal
001025068 980__ $$aVDB
001025068 980__ $$aI:(DE-Juel1)IEK-12-20141217
001025068 980__ $$aUNRESTRICTED
001025068 981__ $$aI:(DE-Juel1)IMD-4-20141217