001025074 001__ 1025074
001025074 005__ 20250203103308.0
001025074 0247_ $$2doi$$a10.1149/MA2023-012519mtgabs
001025074 0247_ $$2ISSN$$a1091-8213
001025074 0247_ $$2ISSN$$a2151-2043
001025074 037__ $$aFZJ-2024-02662
001025074 082__ $$a540
001025074 1001_ $$0P:(DE-HGF)0$$aFrankenstein, Lars$$b0
001025074 245__ $$aStrategies of Practical Implementation of Chemical Pre-Lithiation Using Lithium Arene Complex Solutions: A Systematic Study on Silicon-Based Anodes
001025074 260__ $$aPennington, NJ$$bSoc.$$c2023
001025074 3367_ $$2DRIVER$$aarticle
001025074 3367_ $$2DataCite$$aOutput Types/Journal article
001025074 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712830929_17705
001025074 3367_ $$2BibTeX$$aARTICLE
001025074 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001025074 3367_ $$00$$2EndNote$$aJournal Article
001025074 500__ $$aHierbei handelt es sich lediglich um einen Abstract.
001025074 520__ $$aCurrently, Lithium ion batteries (LIBs) are state-of-the-art (SOTA) energy storage systems. There is an urgent need for further improvements in terms of gravimetric and volumetric energy of LIBs, for a successful market penetration of electric vehicles. Therefore, development of advanced negative electrode materials is of high interest. Here, silicon (Si) is a promising active material to replace SOTA graphite due to its ~10-fold higher specific capacity and being also high abundant.However, Si undergoes severe volume changes up to 280% during (de-)lithiation, resulting in fast capacity fading and short cycle life due to the continuous re-formation of the solid electrolyte interphase (SEI), leading to active lithium losses (ALL). In order to counteract ALL, research is focusing on suitable pre-lithiation processes. Among different pre-lithiation methods, chemical pre-lithiation by application of lithium arene complex (LAC) solutions is promising as it is a fast, easy and cost-effective method.In this work, the stability of three different solvents to produce a 4,4'-dimethylbiphenyl (4,4'-DMBP) LAC is investigated via solid phase microextraction gas chromatography-mass spectrometry method (SPME-GC-MS). The optimized LAC solution is used to evaluate the stability of different binder systems with respect to electrode manufacturing. Based on these fundamental insights, different parameters such as the reaction temperature (T) and pre-lithiation time (PL-t) are systematically investigated regarding suitable degrees of pre-lithiation (DOPL) of the negative electrode. DOPLs up to a plateau of 55% can be obtained by using 0.5 M 4,4'-DMBP in tetrahydrofuran (THF) as LAC solution. Higher temperature during the reaction reduces the PL-t until achieving a pre-lithiation plateau. The impact of the parameters T and PL-t towards the electrochemical performance of Si-based LIB full cells is thoroughly investigated. It is shown that this approach improves the cycle life of a silicon nanowire graphite composite negative electrode up to 600% compared to the pristine electrodes
001025074 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001025074 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001025074 7001_ $$0P:(DE-Juel1)187471$$aMohrhardt, Marvin$$b1
001025074 7001_ $$0P:(DE-HGF)0$$aPeschel, Christopher$$b2
001025074 7001_ $$0P:(DE-HGF)0$$aGomez Martin, Aurora$$b3
001025074 7001_ $$0P:(DE-HGF)0$$aPlacke, Tobias$$b4
001025074 7001_ $$0P:(DE-Juel1)171865$$aKasnatscheew, Johannes$$b5
001025074 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b6
001025074 773__ $$0PERI:(DE-600)2438749-6$$a10.1149/MA2023-012519mtgabs$$gVol. MA2023-01, no. 2, p. 519 - 519$$n2$$p519 - 519$$tMeeting abstracts$$vMA2023-01$$x1091-8213$$y2023
001025074 909CO $$ooai:juser.fz-juelich.de:1025074$$pVDB
001025074 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171865$$aForschungszentrum Jülich$$b5$$kFZJ
001025074 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b6$$kFZJ
001025074 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001025074 9141_ $$y2024
001025074 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001025074 980__ $$ajournal
001025074 980__ $$aVDB
001025074 980__ $$aI:(DE-Juel1)IEK-12-20141217
001025074 980__ $$aUNRESTRICTED
001025074 981__ $$aI:(DE-Juel1)IMD-4-20141217