001025081 001__ 1025081
001025081 005__ 20250203103349.0
001025081 0247_ $$2doi$$a10.1149/MA2023-0172753mtgabs
001025081 0247_ $$2ISSN$$a1091-8213
001025081 0247_ $$2ISSN$$a2151-2043
001025081 037__ $$aFZJ-2024-02669
001025081 082__ $$a540
001025081 1001_ $$aGhaur, Adjmal$$b0
001025081 245__ $$aRethinking the Role of Formerly Sub-Sufficient Industrial/Synthesized SEI Additive Compounds - a New Perspective
001025081 260__ $$aPennington, NJ$$bSoc.$$c2023
001025081 3367_ $$2DRIVER$$aarticle
001025081 3367_ $$2DataCite$$aOutput Types/Journal article
001025081 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712833513_20085
001025081 3367_ $$2BibTeX$$aARTICLE
001025081 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001025081 3367_ $$00$$2EndNote$$aJournal Article
001025081 500__ $$aHierbei handelt es sich lediglich um einen Abstract.
001025081 520__ $$aIn order to improve the performance of lithium-ion batteries (LIBs), novel electrolytes are of primary importance. Recently, fluorinated cyclic phosphazene derivatives in combination with fluoroethylene carbonate (FEC) are mentioned in the literature as a promising electrolyte additive combination, which can decompose to form a dense, uniform, and thin protective layer on the surface of the anode and cathode electrode.[1,2] Additionally, suppressing further electrolyte decomposition and electrode corrosion, thus protecting the structural destruction of the electrodes, are mentioned within this electrolyte composition.[1–3] Furthermore, galvanostatic charge and discharge experiments with different cell composition materials demonstrate that fluorinated cyclic phosphazene compounds as additional additive material tend to improve cycling stability.[1,3,4] Although the electrochemical aspects of cyclic fluorinated phosphazene compounds combined with FEC are briefly introduced, it is still not fully clear how these two compound classes interact constructively during operation mode. Thus, the positive synergistic effect of FEC/Hexafluorocyclotriphosphazene (HFPN)-derivatives on the electrochemical performance during cell operation is not enlightened. The focus of this study is to investigate the complementary effect of FEC and ethoxy(pentafluoro)cyclotriphosphazene (EtPFPN) as additive compounds in an aprotic organic electrolyte in LiNi0.5Co0.2Mn0.3O (NCM523) SiOx/C full cells. Furthermore, the formation mechanism of lithium ethyl methyl carbonate (LEMC)-EtPFPN interfacial products and the reaction mechanism of lithium alkoxide with EtPFPN are proposed and supported with DFT measurements. Additionally, a new effect of FEC regarding the SEI formation will be introduced. The EtPFPN decomposition compounds in the electrolyte after the SEI formation have been investigated via gas chromatography-mass spectrometry (GC-MS) and gas chromatography-high resolution mass spectrometry (GC-HRMS). The electrode electrolyte interface investigation of the SEI has been performed viain-situ shell-isolated nanoparticle enhanced Raman spectroscopy (SHINERS) and scanning electron microscopy (SEM). Constant current cycling is conducted, and in-situ Raman measurements characterize the deposition of electrolyte components and LEMC-EtPFPN traces on the SiOx/C anode material during the SEI formation. Finally, the interplay between EC, EMC, Li-alkoxide, LEMC, FEC, and EtPFPN has been visualized schematically via a reaction mechanism postulated based on analytical data of the electrolyte.[1] A. Ghaur, C. Peschel, I. Dienwiebel, L. Haneke, L. Du, L. Profanter, A. Gomez‐Martin, M. Winter, S. Nowak, T. Placke, Adv Energy Mater2023, 2203503.[2] J. Liu, X. Song, L. Zhou, S. Wang, W. Song, W. Liu, H. Long, L. Zhou, H. Wu, C. Feng, Z. Guo, Nano Energy2018, 46, 404–414.[3] Q. Liu, Z. Chen, Y. Liu, Y. Hong, W. Wang, J. Wang, B. Zhao, Y. Xu, J. Wang, X. Fan, L. Li, H. bin Wu, Energy Storage Mater2021, 37, 521–529.[4] Y.-H. Liu, M. Okano, T. Mukai, K. Inoue, M. Yanagida, T. Sakai, J Power Sources2016, 304, 9–14.
001025081 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001025081 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001025081 7001_ $$0P:(DE-Juel1)188450$$aPfeiffer, Felix$$b1
001025081 7001_ $$0P:(DE-Juel1)169877$$aDiddens, Diddo$$b2
001025081 7001_ $$0P:(DE-HGF)0$$aPeschel, Christoph$$b3
001025081 7001_ $$0P:(DE-HGF)0$$aDienwiebel, Iris$$b4
001025081 7001_ $$0P:(DE-HGF)0$$aDu, Leilei$$b5
001025081 7001_ $$0P:(DE-HGF)0$$aProfanter, Laurin$$b6
001025081 7001_ $$0P:(DE-Juel1)190810$$aWeiling, Matthias$$b7
001025081 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b8
001025081 7001_ $$0P:(DE-HGF)0$$aPlacke, Tobias$$b9
001025081 7001_ $$0P:(DE-HGF)0$$aNowak, Sascha$$b10
001025081 7001_ $$0P:(DE-HGF)0$$aBaghernejad, Masoud$$b11
001025081 773__ $$0PERI:(DE-600)2438749-6$$a10.1149/MA2023-0172753mtgabs$$gVol. MA2023-01, no. 7, p. 2753 - 2753$$n7$$p2753 - 2753$$tMeeting abstracts$$vMA2023-01$$x1091-8213$$y2023
001025081 909CO $$ooai:juser.fz-juelich.de:1025081$$pVDB
001025081 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188450$$aForschungszentrum Jülich$$b1$$kFZJ
001025081 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169877$$aForschungszentrum Jülich$$b2$$kFZJ
001025081 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190810$$aForschungszentrum Jülich$$b7$$kFZJ
001025081 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b8$$kFZJ
001025081 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001025081 9141_ $$y2024
001025081 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001025081 980__ $$ajournal
001025081 980__ $$aVDB
001025081 980__ $$aI:(DE-Juel1)IEK-12-20141217
001025081 980__ $$aUNRESTRICTED
001025081 981__ $$aI:(DE-Juel1)IMD-4-20141217