001025083 001__ 1025083
001025083 005__ 20250203103102.0
001025083 0247_ $$2doi$$a10.1149/MA2023-016984mtgabs
001025083 0247_ $$2ISSN$$a1091-8213
001025083 0247_ $$2ISSN$$a2151-2043
001025083 037__ $$aFZJ-2024-02671
001025083 082__ $$a540
001025083 1001_ $$0P:(DE-Juel1)184936$$aVargas-Barbosa, Nella Marie$$b0$$ufzj
001025083 245__ $$aHybrid Material Concepts for Thiophosphate-Based Solid-State Batteries
001025083 260__ $$aPennington, NJ$$bSoc.$$c2023
001025083 3367_ $$2DRIVER$$aarticle
001025083 3367_ $$2DataCite$$aOutput Types/Journal article
001025083 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712831182_17869
001025083 3367_ $$2BibTeX$$aARTICLE
001025083 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001025083 3367_ $$00$$2EndNote$$aJournal Article
001025083 500__ $$aHierbei handelt es sich lediglich um einen Abstract.
001025083 520__ $$aSolid-state batteries (SSBs) could replace conventional lithium-ion batteries due to the possibility of increasing the energy density of the cells by using lithium metal as the anode material.[1] Among the many electrolyte candidates for lithium SSBs, the lithium thiophosphates are particularly interesting due to their high ionic conductivities at room temperature (>1 mS/cm). However, the (electro)chemical stability of these solid electrolytes is limited and not fully compatible with state-of-the-art high-potential cathode active materials[2] or the lithium metal anode.[3] At the cell level, the formation of interparticle voids between the various battery components (solid electrolyte, cathode active material, anode material, additives, decomposition interphases) hinder the net transport during cycling. To address the latter electro-chemo-mechanical challenges, we are exploring hybrid material approaches, in which we combine established materials (solid electrolytes, liquid electrolytes and/or polymer additives) with state-of-the-art cathode active materials and test their electrochemical performance in solid-state battery (half-)cells. Such cycling results are complimented by detailed electrochemical transport studies in symmetrical cells using DC polarization and electrochemical impedance spectroscopy, including transmission-line modeling. ex.situ chemically-specific spectroscopic methods are used to support our hypotheses and interpretation of the electrochemical results. Taken together, we attain a better picture on the positive (or negative) role hybrid materials play in SSBs. In this talk, we will showcase two hybrid systems, namely ionic liquid/thiophosphate lithium hybrid electrolytes and conductive polymers additives in NMC-based catholyte composites for Li6PS5Cl cells. The first part of the talk we will discuss the results in which we evaluate the performance of liquid electrolyte-solid electrolyte materials against lithium metal using galvanostatic electrochemical impedance spectroscopy. In the second part, we elucidate the partial ionic and electronic transport in polymer electrolyte-Li6PS5Cl-NMC catholytes as a function of polymer content using impedance spectroscopy and its effect in the cycling performance, both the stability as well as the magnitude of the discharge capacities. These systems serve as a good starting point for the further development and incorporation of hybrid materials in SSBs.Literature: [1] W. G. Zeier and J. Janek Nature Energy, 2016, 1, 16141. [2] G.F. Dewald, S. Ohno, M.A. Kraft, R. Kroever, P. Till, N.M. Vargas-Barbosa, J. Janek, W.G. Zeier Chem. Mater. 2019, 31, 8328. [3] L. M. Riegger, R. Schlem, J. Sann, W. G. Zeier, J. Janek, Angew. Chem. Int Ed 2021, 60, 6718.
001025083 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001025083 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001025083 7001_ $$0P:(DE-Juel1)191492$$aPuls, Sebastian$$b1$$ufzj
001025083 7001_ $$aWoolley, Henry Michael$$b2
001025083 773__ $$0PERI:(DE-600)2438749-6$$a10.1149/MA2023-016984mtgabs$$gVol. MA2023-01, no. 6, p. 984 - 984$$n6$$p984 - 984$$tMeeting abstracts$$vMA2023-01$$x1091-8213$$y2023
001025083 909CO $$ooai:juser.fz-juelich.de:1025083$$pVDB
001025083 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184936$$aForschungszentrum Jülich$$b0$$kFZJ
001025083 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191492$$aForschungszentrum Jülich$$b1$$kFZJ
001025083 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001025083 9141_ $$y2024
001025083 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001025083 980__ $$ajournal
001025083 980__ $$aVDB
001025083 980__ $$aI:(DE-Juel1)IEK-12-20141217
001025083 980__ $$aUNRESTRICTED
001025083 981__ $$aI:(DE-Juel1)IMD-4-20141217