001025084 001__ 1025084
001025084 005__ 20250203103432.0
001025084 0247_ $$2doi$$a10.1149/MA2023-012665mtgabs
001025084 0247_ $$2ISSN$$a1091-8213
001025084 0247_ $$2ISSN$$a2151-2043
001025084 037__ $$aFZJ-2024-02672
001025084 082__ $$a540
001025084 1001_ $$00000-0002-1329-1295$$aArifiadi, Anindityo$$b0
001025084 245__ $$aEstablishing an Appropriate Voltage Window for Stable Cycling of Li/Mn-Rich Layered Oxide || Graphite Full Cells
001025084 260__ $$aPennington, NJ$$bSoc.$$c2023
001025084 3367_ $$2DRIVER$$aarticle
001025084 3367_ $$2DataCite$$aOutput Types/Journal article
001025084 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712833346_17869
001025084 3367_ $$2BibTeX$$aARTICLE
001025084 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001025084 3367_ $$00$$2EndNote$$aJournal Article
001025084 500__ $$aHierbei handelt es sich lediglich um einen Abstract.
001025084 520__ $$aLi/Mn-rich layered oxide cathode active materials (LMR) have gained attention due to their exceptionally high practical specific discharge capacity (>250 mAh g-1) originating from both conventional cationic as well as anionic oxygen redox contributions. To achieve this high capacity, the Li2MnO3-like regions of the material, which give rise to oxygen redox need to be electrochemically activated at high voltage (above 4.6 V versus Li+/Li0). This high voltage activation, however, results in the destabilization of lattice oxygen that creates subsequent adverse phenomena such as first-cycle hysteresis and the evolution of redox couples. The latter happens continuously during cycling and results in the activation of Mn3+/Mn4+ redox couple. This redox couple involving Mn3+ is problematic because, at this oxidation state, Mn disproportionation reaction can occur, resulting in the formation of highly soluble Mn2+ species. In a half-cell setup, the impact of Mn dissolution may be subtle, however, in LMR||Graphite full cells, the impact is consequential.This work focuses on investigating the degradation mechanism of LMR||Graphite full cells at different voltage windows applied during the activation cycles and the long-term cycling. These different voltage windows alter the redox contributions and thus affect the long-term performance of the cells. We observe that lowering the upper cut-off voltage (UCV) from 4.7 V to 4.5 V during the entire cycling process can increase capacity retention, although rapid degradation can still be observed. Only when the UCV during the long-term cycling is lowered to 4.3 V, can we obtain incremental degradation of the cells. We also show that lowering the activation cycles UCV to 4.5 V is beneficial for long-term cycling due to the lower contribution of Mn3+/Mn4+ redox couple after the activation cycles. Finally, we observe that increasing the lower cut-off voltage from 1.9 V to 2.4 V results in higher discharge voltage. Nevertheless it is followed by a reduction in discharge capacity, resulting in a lower specific energy. This study offers insights into the high-voltage cycling performance of practical LMR||Gr full cells that can be used for the foundation of material design to alleviate the adverse effect of oxygen redox in LMR.
001025084 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001025084 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001025084 7001_ $$aSchmuch, Richard$$b1
001025084 7001_ $$0P:(DE-Juel1)171865$$aKasnatscheew, Johannes$$b2
001025084 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b3
001025084 773__ $$0PERI:(DE-600)2438749-6$$a10.1149/MA2023-012665mtgabs$$gVol. MA2023-01, no. 2, p. 665 - 665$$n2$$p665 - 665$$tMeeting abstracts$$vMA2023-01$$x1091-8213$$y2023
001025084 909CO $$ooai:juser.fz-juelich.de:1025084$$pVDB
001025084 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171865$$aForschungszentrum Jülich$$b2$$kFZJ
001025084 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b3$$kFZJ
001025084 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001025084 9141_ $$y2024
001025084 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001025084 980__ $$ajournal
001025084 980__ $$aVDB
001025084 980__ $$aI:(DE-Juel1)IEK-12-20141217
001025084 980__ $$aUNRESTRICTED
001025084 981__ $$aI:(DE-Juel1)IMD-4-20141217