Hauptseite > Publikationsdatenbank > Establishing an Appropriate Voltage Window for Stable Cycling of Li/Mn-Rich Layered Oxide || Graphite Full Cells > print |
001 | 1025084 | ||
005 | 20250203103432.0 | ||
024 | 7 | _ | |a 10.1149/MA2023-012665mtgabs |2 doi |
024 | 7 | _ | |a 1091-8213 |2 ISSN |
024 | 7 | _ | |a 2151-2043 |2 ISSN |
037 | _ | _ | |a FZJ-2024-02672 |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Arifiadi, Anindityo |0 0000-0002-1329-1295 |b 0 |
245 | _ | _ | |a Establishing an Appropriate Voltage Window for Stable Cycling of Li/Mn-Rich Layered Oxide || Graphite Full Cells |
260 | _ | _ | |a Pennington, NJ |c 2023 |b Soc. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1712833346_17869 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a Hierbei handelt es sich lediglich um einen Abstract. |
520 | _ | _ | |a Li/Mn-rich layered oxide cathode active materials (LMR) have gained attention due to their exceptionally high practical specific discharge capacity (>250 mAh g-1) originating from both conventional cationic as well as anionic oxygen redox contributions. To achieve this high capacity, the Li2MnO3-like regions of the material, which give rise to oxygen redox need to be electrochemically activated at high voltage (above 4.6 V versus Li+/Li0). This high voltage activation, however, results in the destabilization of lattice oxygen that creates subsequent adverse phenomena such as first-cycle hysteresis and the evolution of redox couples. The latter happens continuously during cycling and results in the activation of Mn3+/Mn4+ redox couple. This redox couple involving Mn3+ is problematic because, at this oxidation state, Mn disproportionation reaction can occur, resulting in the formation of highly soluble Mn2+ species. In a half-cell setup, the impact of Mn dissolution may be subtle, however, in LMR||Graphite full cells, the impact is consequential.This work focuses on investigating the degradation mechanism of LMR||Graphite full cells at different voltage windows applied during the activation cycles and the long-term cycling. These different voltage windows alter the redox contributions and thus affect the long-term performance of the cells. We observe that lowering the upper cut-off voltage (UCV) from 4.7 V to 4.5 V during the entire cycling process can increase capacity retention, although rapid degradation can still be observed. Only when the UCV during the long-term cycling is lowered to 4.3 V, can we obtain incremental degradation of the cells. We also show that lowering the activation cycles UCV to 4.5 V is beneficial for long-term cycling due to the lower contribution of Mn3+/Mn4+ redox couple after the activation cycles. Finally, we observe that increasing the lower cut-off voltage from 1.9 V to 2.4 V results in higher discharge voltage. Nevertheless it is followed by a reduction in discharge capacity, resulting in a lower specific energy. This study offers insights into the high-voltage cycling performance of practical LMR||Gr full cells that can be used for the foundation of material design to alleviate the adverse effect of oxygen redox in LMR. |
536 | _ | _ | |a 1221 - Fundamentals and Materials (POF4-122) |0 G:(DE-HGF)POF4-1221 |c POF4-122 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Schmuch, Richard |b 1 |
700 | 1 | _ | |a Kasnatscheew, Johannes |0 P:(DE-Juel1)171865 |b 2 |
700 | 1 | _ | |a Winter, Martin |0 P:(DE-Juel1)166130 |b 3 |
773 | _ | _ | |a 10.1149/MA2023-012665mtgabs |g Vol. MA2023-01, no. 2, p. 665 - 665 |0 PERI:(DE-600)2438749-6 |n 2 |p 665 - 665 |t Meeting abstracts |v MA2023-01 |y 2023 |x 1091-8213 |
909 | C | O | |o oai:juser.fz-juelich.de:1025084 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)171865 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)166130 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-122 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Elektrochemische Energiespeicherung |9 G:(DE-HGF)POF4-1221 |x 0 |
914 | 1 | _ | |y 2024 |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-12-20141217 |k IEK-12 |l Helmholtz-Institut Münster Ionenleiter für Energiespeicher |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IEK-12-20141217 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IMD-4-20141217 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|