001025086 001__ 1025086
001025086 005__ 20250203103127.0
001025086 0247_ $$2doi$$a10.1016/j.tibs.2023.08.009
001025086 0247_ $$2ISSN$$a0376-5067
001025086 0247_ $$2ISSN$$a0968-0004
001025086 0247_ $$2ISSN$$a1362-4326
001025086 0247_ $$2pmid$$a37718229
001025086 0247_ $$2WOS$$aWOS:001101421200001
001025086 037__ $$aFZJ-2024-02674
001025086 082__ $$a540
001025086 1001_ $$aSchlösser, Lukas$$b0
001025086 245__ $$aConserved structures of ESCRT-III superfamily members across domains of life
001025086 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2023
001025086 3367_ $$2DRIVER$$aarticle
001025086 3367_ $$2DataCite$$aOutput Types/Journal article
001025086 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712825882_19457
001025086 3367_ $$2BibTeX$$aARTICLE
001025086 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001025086 3367_ $$00$$2EndNote$$aJournal Article
001025086 520__ $$aStructural and evolutionary studies of cyanobacterial phage shock protein A (PspA) and inner membrane-associated protein of 30 kDa (IM30) have revealed that these proteins belong to the endosomal sorting complex required for transport-III (ESCRT-III) superfamily, which is conserved across all three domains of life. PspA and IM30 share secondary and tertiary structures with eukaryotic ESCRT-III proteins, whilst also oligomerizing via conserved interactions. Here, we examine the structures of bacterial ESCRT-III-like proteins and compare the monomeric and oligomerized forms with their eukaryotic counterparts. We discuss conserved interactions used for self-assembly and highlight key hinge regions that mediate oligomer ultrastructure versatility. Finally, we address the differences in nomenclature assigned to equivalent structural motifs in both the bacterial and eukaryotic fields and suggest a common nomenclature applicable across the ESCRT-III superfamily.
001025086 536__ $$0G:(DE-HGF)POF4-5352$$a5352 - Understanding the Functionality of Soft Matter and Biomolecular Systems (POF4-535)$$cPOF4-535$$fPOF IV$$x0
001025086 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x1
001025086 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001025086 7001_ $$0P:(DE-Juel1)173949$$aSachse, Carsten$$b1
001025086 7001_ $$00000-0002-1226-3217$$aLow, Harry H.$$b2
001025086 7001_ $$00000-0003-4517-6387$$aSchneider, Dirk$$b3$$eCorresponding author
001025086 773__ $$0PERI:(DE-600)1498901-3$$a10.1016/j.tibs.2023.08.009$$gVol. 48, no. 11, p. 993 - 1004$$n11$$p993 - 1004$$tTrends in biochemical sciences$$v48$$x0376-5067$$y2023
001025086 8564_ $$uhttps://juser.fz-juelich.de/record/1025086/files/Conserved%20structures%20of%20ESCRT-III.pdf$$yRestricted
001025086 8564_ $$uhttps://juser.fz-juelich.de/record/1025086/files/Conserved%20structures%20of%20ESCRT-III.gif?subformat=icon$$xicon$$yRestricted
001025086 8564_ $$uhttps://juser.fz-juelich.de/record/1025086/files/Conserved%20structures%20of%20ESCRT-III.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
001025086 8564_ $$uhttps://juser.fz-juelich.de/record/1025086/files/Conserved%20structures%20of%20ESCRT-III.jpg?subformat=icon-180$$xicon-180$$yRestricted
001025086 8564_ $$uhttps://juser.fz-juelich.de/record/1025086/files/Conserved%20structures%20of%20ESCRT-III.jpg?subformat=icon-640$$xicon-640$$yRestricted
001025086 909CO $$ooai:juser.fz-juelich.de:1025086$$pVDB
001025086 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173949$$aForschungszentrum Jülich$$b1$$kFZJ
001025086 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5352$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
001025086 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x1
001025086 9141_ $$y2024
001025086 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-08-25$$wger
001025086 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-25
001025086 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-25
001025086 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-25
001025086 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-25
001025086 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-08-25
001025086 915__ $$0StatID:(DE-HGF)1120$$2StatID$$aDBCoverage$$bBIOSIS Reviews Reports And Meetings$$d2023-08-25
001025086 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-25
001025086 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bTRENDS BIOCHEM SCI : 2022$$d2023-08-25
001025086 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-25
001025086 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-25
001025086 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-25
001025086 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-25
001025086 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bTRENDS BIOCHEM SCI : 2022$$d2023-08-25
001025086 920__ $$lyes
001025086 9201_ $$0I:(DE-Juel1)ER-C-3-20170113$$kER-C-3$$lStrukturbiologie$$x0
001025086 980__ $$ajournal
001025086 980__ $$aVDB
001025086 980__ $$aI:(DE-Juel1)ER-C-3-20170113
001025086 980__ $$aUNRESTRICTED