001025088 001__ 1025088
001025088 005__ 20250203103351.0
001025088 0247_ $$2doi$$a10.1093/micmic/ozad067.521
001025088 0247_ $$2ISSN$$a1079-8501
001025088 0247_ $$2ISSN$$a1431-9276
001025088 0247_ $$2ISSN$$a1435-8115
001025088 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-02676
001025088 037__ $$aFZJ-2024-02676
001025088 082__ $$a500
001025088 1001_ $$0P:(DE-Juel1)177744$$aBerkamp, Sabrina$$b0$$ufzj
001025088 245__ $$aHigh-Throughput Correlative Light and Cryo-Electron Microscopy Pipeline Using PRIMO Micropatterning, CERES Ice Shield and the METEOR In-Chamber Fluorescence Light Microscope
001025088 260__ $$aOxford$$bOxford University Press$$c2023
001025088 3367_ $$2DRIVER$$aarticle
001025088 3367_ $$2DataCite$$aOutput Types/Journal article
001025088 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712833405_20085
001025088 3367_ $$2BibTeX$$aARTICLE
001025088 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001025088 3367_ $$00$$2EndNote$$aJournal Article
001025088 520__ $$aCorrelative light and cryo-electron microscopy (CLEM) can be used to study macromolecular structures in vitreous state of the complex environment of the cell. The associated workflow, however, is still cumbersome and low throughput. It includes many steps and is therefore prone to ice contamination, cracked lamellae or devitrification all of which can result in sample loss. We have implemented several technological improvements to the workflow resulting in a much simpler and higher throughput method, yielding more lamellae with reduced ice contamination.
001025088 536__ $$0G:(DE-HGF)POF4-5352$$a5352 - Understanding the Functionality of Soft Matter and Biomolecular Systems (POF4-535)$$cPOF4-535$$fPOF IV$$x0
001025088 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x1
001025088 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001025088 7001_ $$0P:(DE-HGF)0$$aSmeets, Marit$$b1
001025088 7001_ $$0P:(DE-HGF)0$$aCaignard, Alexane$$b2
001025088 7001_ $$0P:(DE-HGF)0$$aJani, Riddhi$$b3
001025088 7001_ $$0P:(DE-HGF)0$$aDaviran, Deniz$$b4
001025088 7001_ $$0P:(DE-Juel1)173949$$aSachse, Carsten$$b5$$eCorresponding author
001025088 773__ $$0PERI:(DE-600)1481716-0$$a10.1093/micmic/ozad067.521$$gVol. 29, no. Supplement_1, p. 1027 - 1028$$nSupplement_1$$p1027 - 1028$$tMicroscopy and microanalysis$$v29$$x1079-8501$$y2023
001025088 8564_ $$uhttps://juser.fz-juelich.de/record/1025088/files/High-Throughput%20Correlative%20Light%20and%20Cryo-EM%20Pipeline.pdf$$yOpenAccess
001025088 8564_ $$uhttps://juser.fz-juelich.de/record/1025088/files/High-Throughput%20Correlative%20Light%20and%20Cryo-EM%20Pipeline.gif?subformat=icon$$xicon$$yOpenAccess
001025088 8564_ $$uhttps://juser.fz-juelich.de/record/1025088/files/High-Throughput%20Correlative%20Light%20and%20Cryo-EM%20Pipeline.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001025088 8564_ $$uhttps://juser.fz-juelich.de/record/1025088/files/High-Throughput%20Correlative%20Light%20and%20Cryo-EM%20Pipeline.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001025088 8564_ $$uhttps://juser.fz-juelich.de/record/1025088/files/High-Throughput%20Correlative%20Light%20and%20Cryo-EM%20Pipeline.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001025088 909CO $$ooai:juser.fz-juelich.de:1025088$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001025088 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177744$$aForschungszentrum Jülich$$b0$$kFZJ
001025088 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173949$$aForschungszentrum Jülich$$b5$$kFZJ
001025088 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5352$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
001025088 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x1
001025088 9141_ $$y2024
001025088 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-22
001025088 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-22
001025088 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-22
001025088 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-22
001025088 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMICROSC MICROANAL : 2022$$d2023-08-22
001025088 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-22
001025088 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-08-22
001025088 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-22
001025088 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-22
001025088 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001025088 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-22
001025088 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-22
001025088 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-08-22$$wger
001025088 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-22
001025088 920__ $$lyes
001025088 9201_ $$0I:(DE-Juel1)ER-C-3-20170113$$kER-C-3$$lStrukturbiologie$$x0
001025088 980__ $$ajournal
001025088 980__ $$aVDB
001025088 980__ $$aUNRESTRICTED
001025088 980__ $$aI:(DE-Juel1)ER-C-3-20170113
001025088 9801_ $$aFullTexts