001 | 1025088 | ||
005 | 20250203103351.0 | ||
024 | 7 | _ | |a 10.1093/micmic/ozad067.521 |2 doi |
024 | 7 | _ | |a 1079-8501 |2 ISSN |
024 | 7 | _ | |a 1431-9276 |2 ISSN |
024 | 7 | _ | |a 1435-8115 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2024-02676 |2 datacite_doi |
037 | _ | _ | |a FZJ-2024-02676 |
082 | _ | _ | |a 500 |
100 | 1 | _ | |a Berkamp, Sabrina |0 P:(DE-Juel1)177744 |b 0 |u fzj |
245 | _ | _ | |a High-Throughput Correlative Light and Cryo-Electron Microscopy Pipeline Using PRIMO Micropatterning, CERES Ice Shield and the METEOR In-Chamber Fluorescence Light Microscope |
260 | _ | _ | |a Oxford |c 2023 |b Oxford University Press |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1712833405_20085 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Correlative light and cryo-electron microscopy (CLEM) can be used to study macromolecular structures in vitreous state of the complex environment of the cell. The associated workflow, however, is still cumbersome and low throughput. It includes many steps and is therefore prone to ice contamination, cracked lamellae or devitrification all of which can result in sample loss. We have implemented several technological improvements to the workflow resulting in a much simpler and higher throughput method, yielding more lamellae with reduced ice contamination. |
536 | _ | _ | |a 5352 - Understanding the Functionality of Soft Matter and Biomolecular Systems (POF4-535) |0 G:(DE-HGF)POF4-5352 |c POF4-535 |f POF IV |x 0 |
536 | _ | _ | |a 5241 - Molecular Information Processing in Cellular Systems (POF4-524) |0 G:(DE-HGF)POF4-5241 |c POF4-524 |f POF IV |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Smeets, Marit |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Caignard, Alexane |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Jani, Riddhi |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Daviran, Deniz |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Sachse, Carsten |0 P:(DE-Juel1)173949 |b 5 |e Corresponding author |
773 | _ | _ | |a 10.1093/micmic/ozad067.521 |g Vol. 29, no. Supplement_1, p. 1027 - 1028 |0 PERI:(DE-600)1481716-0 |n Supplement_1 |p 1027 - 1028 |t Microscopy and microanalysis |v 29 |y 2023 |x 1079-8501 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1025088/files/High-Throughput%20Correlative%20Light%20and%20Cryo-EM%20Pipeline.pdf |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1025088/files/High-Throughput%20Correlative%20Light%20and%20Cryo-EM%20Pipeline.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1025088/files/High-Throughput%20Correlative%20Light%20and%20Cryo-EM%20Pipeline.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1025088/files/High-Throughput%20Correlative%20Light%20and%20Cryo-EM%20Pipeline.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1025088/files/High-Throughput%20Correlative%20Light%20and%20Cryo-EM%20Pipeline.jpg?subformat=icon-640 |
909 | C | O | |o oai:juser.fz-juelich.de:1025088 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)177744 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)173949 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Materials Systems Engineering |1 G:(DE-HGF)POF4-530 |0 G:(DE-HGF)POF4-535 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Materials Information Discovery |9 G:(DE-HGF)POF4-5352 |x 0 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-524 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Molecular and Cellular Information Processing |9 G:(DE-HGF)POF4-5241 |x 1 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-08-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2023-08-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2023-08-22 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b MICROSC MICROANAL : 2022 |d 2023-08-22 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2023-08-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-08-22 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2023-08-22 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-08-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-08-22 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2023-08-22 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-08-22 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)ER-C-3-20170113 |k ER-C-3 |l Strukturbiologie |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)ER-C-3-20170113 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|