001025096 001__ 1025096
001025096 005__ 20250204113835.0
001025096 0247_ $$2doi$$a10.1038/s41598-024-55255-7
001025096 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-02683
001025096 0247_ $$2pmid$$a38454014
001025096 0247_ $$2WOS$$aWOS:001185083700017
001025096 037__ $$aFZJ-2024-02683
001025096 082__ $$a600
001025096 1001_ $$00000-0003-4026-9648$$aAscoli, Alon$$b0$$eCorresponding author
001025096 245__ $$aAn analytical approach to engineer multistability in the oscillatory response of a pulse-driven ReRAM
001025096 260__ $$a[London]$$bMacmillan Publishers Limited, part of Springer Nature$$c2024
001025096 3367_ $$2DRIVER$$aarticle
001025096 3367_ $$2DataCite$$aOutput Types/Journal article
001025096 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712833290_17705
001025096 3367_ $$2BibTeX$$aARTICLE
001025096 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001025096 3367_ $$00$$2EndNote$$aJournal Article
001025096 520__ $$aA nonlinear system, exhibiting a unique asymptotic behaviour, while being continuously subject to a stimulus from a certain class, is said to suffer from fading memory. This interesting phenomenon was first uncovered in a non-volatile tantalum oxide-based memristor from Hewlett Packard Labs back in 2016 out of a deep numerical investigation of a predictive mathematical description, known as the Strachan model, later corroborated by experimental validation. It was then found out that fading memory is ubiquitous in non-volatile resistance switching memories. A nonlinear system may however also exhibit a local form of fading memory, in case, under an excitation from a given family, it may approach one of a number of distinct attractors, depending upon the initial condition. A recent bifurcation study of the Strachan model revealed how, under specific train stimuli, composed of two square pulses of opposite polarity per cycle, the simplest form of local fading memory affects the transient dynamics of the aforementioned Resistive Random Access Memory cell, which, would asymptotically act as a bistable oscillator. In this manuscript we propose an analytical methodology, based on the application of analysis tools from Nonlinear System Theory to the Strachan model, to craft the properties of a generalised pulse train stimulus in such a way to induce the emergence of complex local fading memory effects in the nano-device, which would consequently display an interesting tuneable multistable oscillatory response, around desired resistance states. The last part of the manuscript discusses a case study, shedding light on a potential application of the local history erase effects, induced in the device via pulse train stimulation, for compensating the unwanted yet unavoidable drifts in its resistance state under power off conditions.
001025096 536__ $$0G:(DE-HGF)POF4-5234$$a5234 - Emerging NC Architectures (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001025096 536__ $$0G:(DE-HGF)POF4-5232$$a5232 - Computational Principles (POF4-523)$$cPOF4-523$$fPOF IV$$x1
001025096 536__ $$0G:(DE-HGF)POF4-5233$$a5233 - Memristive Materials and Devices (POF4-523)$$cPOF4-523$$fPOF IV$$x2
001025096 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001025096 7001_ $$0P:(DE-HGF)0$$aSchmitt, Nicolas$$b1
001025096 7001_ $$0P:(DE-HGF)0$$aMessaris, Ioannis$$b2
001025096 7001_ $$0P:(DE-HGF)0$$aDemirkol, Ahmet Samil$$b3
001025096 7001_ $$0P:(DE-Juel1)188145$$aStrachan, John Paul$$b4
001025096 7001_ $$0P:(DE-HGF)0$$aTetzlaff, Ronald$$b5
001025096 7001_ $$0P:(DE-HGF)0$$aChua, Leon$$b6
001025096 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/s41598-024-55255-7$$gVol. 14, no. 1, p. 5626$$n1$$p5626$$tScientific reports$$v14$$x2045-2322$$y2024
001025096 8564_ $$uhttps://juser.fz-juelich.de/record/1025096/files/s41598-024-55255-7.pdf$$yOpenAccess
001025096 8564_ $$uhttps://juser.fz-juelich.de/record/1025096/files/s41598-024-55255-7.gif?subformat=icon$$xicon$$yOpenAccess
001025096 8564_ $$uhttps://juser.fz-juelich.de/record/1025096/files/s41598-024-55255-7.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001025096 8564_ $$uhttps://juser.fz-juelich.de/record/1025096/files/s41598-024-55255-7.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001025096 8564_ $$uhttps://juser.fz-juelich.de/record/1025096/files/s41598-024-55255-7.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001025096 909CO $$ooai:juser.fz-juelich.de:1025096$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001025096 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188145$$aForschungszentrum Jülich$$b4$$kFZJ
001025096 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5234$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001025096 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5232$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x1
001025096 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5233$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x2
001025096 9141_ $$y2024
001025096 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001025096 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-24
001025096 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-24
001025096 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-24
001025096 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-24
001025096 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001025096 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-24
001025096 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2022$$d2024-12-18
001025096 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-18
001025096 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-18
001025096 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-07-29T15:28:26Z
001025096 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-07-29T15:28:26Z
001025096 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-07-29T15:28:26Z
001025096 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-18
001025096 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-18
001025096 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-18
001025096 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2024-12-18
001025096 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-18
001025096 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-18
001025096 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-18
001025096 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-18
001025096 920__ $$lyes
001025096 9201_ $$0I:(DE-Juel1)PGI-14-20210412$$kPGI-14$$lNeuromorphic Compute Nodes$$x0
001025096 980__ $$ajournal
001025096 980__ $$aVDB
001025096 980__ $$aUNRESTRICTED
001025096 980__ $$aI:(DE-Juel1)PGI-14-20210412
001025096 9801_ $$aFullTexts