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Abstract: The temporary storage of wet algae concentrates enables the decoupling in time of algae
harvests and their biorefinery. However, the impact of cultivation and of the harvest conditions on
algae quality during preservation is largely unknown. This study aimed to determine the impact of
nutrient limitation and of harvest methods on the preservation of Chlorella vulgaris biomass. Algae
were either well-fed until harvest or received no nutrients for one week, and were harvested by
either batch or continuous centrifugation. The organic acid formation, lipid levels, and lipolysis were
monitored. Nutrient limitation had a large impact and resulted in lower pH values (4.9 ± 0.4), high
levels of lactic acid and acetic acid, and a slightly higher degree of lipid hydrolysis. Concentrates
of well-fed algae had a higher pH (7.4 ± 0.2) and another pattern of fermentation products with
mainly acetic acid, succinic acid, and, to a smaller extent, lactic acid and propionic acid. The effect of
the harvest method was smaller, with, most often, higher lactic acid and acetic acid levels for algae
harvested by continuous centrifugation than for those obtained by batch centrifugation. In conclusion,
nutrient limitation, a well-known method to enhance algae lipid levels, can impact several quality
attributes of algae during their wet storage.

Keywords: Chlorella vulgaris; preservation; nutrient depletion; harvest; organic acids; lipids

1. Introduction

There is growing interest in the commercial use of microalgae for a variety of applica-
tions, including food, feed, nutraceuticals, and cosmetics [1,2]. The worldwide production
of microalgae has tripled in the last 5 years [2] and is expected to continue expanding
significantly in the coming years [3]. Chlorella sp. are among the most popular species in
terms of cultivation, both on a European [1] and a global level [4]. Chlorella sp. biomass
has been granted generally regarded as safe (GRAS) status [5] and several Chlorella sp. are
authorized as food in the EU [6]. Chlorella is hence an important group of microalgae from
a commercial point of view.

Most algae-related research focuses on algae growth and algae processing. However,
the preservation of algae, which is needed to bridge the period between algae cultivation
and processing, has received much less attention. This is, however, an inevitable step
in the value chain. Indeed, the moment at which algae are ready for harvest depends
on the weather conditions and is therefore highly variable. In practice, it is difficult to
plan processing immediately after algae cultivation and harvesting. Temporary storage
is thus often unavoidable. Wet storage seems to be an attractive approach for short-term
preservation because it avoids drying costs. Nevertheless, microbial stability is a concern,
and, in some algal species, lipid degradation may also be a risk during wet storage [7].
Cell integrity is known to affect lipid stability during the preservation of Nannochloropsis
oculata and T-Isochrysis lutea [8]. It was suggested that harvesting, and centrifugation in
particular, triggers cell disruption and thereby induces lipolysis in T-Isochrysis lutea [9]. This
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finding raises the question of whether algae deterioration can be limited by adjustments
in the harvesting method. It can be hypothesized that the impact of harvesting is species-
dependent because the cell (wall) structure also varies widely across algae species. It is
hence particularly interesting to study the lipid stability–harvest method relation for widely
cultivated and commercially interesting algae such as Chlorella.

Another knowledge gap in the field of wet algae preservation is the effect of nutrient
starvation on algae preservability. Algae cultivation is often ended by a nutrient depletion
period to improve lipid content [10]. However, these stressful conditions might adversely
affect post-harvest storage and ultimately the final quality of the algae. To date, this topic
has received scant attention in the research literature.

The aim of this paper is to study the effect of the harvest method and of nutrient
limitation on algae quality during the wet preservation of Chlorella concentrates. This
should make an important contribution to the optimization of algae storage.

2. Materials and Methods
2.1. Chlorella Biomass Cultivation, Harvest, and Storage

Chlorella vulgaris CCALA (C1) was cultivated in a strictly phototrophic way in V-bags
and phytobag modules (total volume 700 l) at an outdoor facility at Forschungszentrum
Jülich GmbH (FZJ). The non-axenic outdoor cultures were not heated/cooled, as the
general microclimatic conditions were mild (see Supplementary Table S1). Cultures were
monitored microscopically and regularly via cell counting (Coulter Counter, Multisizer 3,
Beckman, Indianapolis, IN 46268, USA) for a rough overview of the bacteria/debris load
and accompanying species or grazers. Microscopy analysis confirmed that Chlorella was by
far the main algae in the culture. Cultures were supplied with additional CO2 (bubbling air
enriched to ~1%). More information on algae cultivation is given by Schreiber et al. [11].
Growth was monitored via optical density, and nutrient availability was controlled for
total nitrogen and orthophosphate. Nutrients were replenished bi-weekly as necessary
with urea and KH2PO4 as the main N source and P source, respectively. Incident light was
determined as global irradiation and PAR outdoors, and temperature as the hourly average
from the FZJ meteorological station (50◦54′36′′ N, 6◦24′34′′ E, 93 MSL). The relevant growth
period lasted from 2nd September to 1st October 2019, with harvests on 9th, 16th, 23rd, and
30th September (regular weekly intervals). The outdoor cultures reached, in the well-fed
phase (up to 23rd September), an OD750 of ~7, where an OD750 of 1 equaled roughly ~0.4 g
DW/l. For the following week, the culture was divided into a replenished (well-fed) and
starving (not fed) culture. The well-fed culture and the culture without a nutrient supply
in the last week are further referred to as the well-fed and temporarily unfed cultures,
respectively. With deteriorating weather (low light exposure), both culture regimes resulted
in OD between 1 and 2.

Both algae cultures (well-fed and temporarily unfed) were harvested by either con-
tinuous centrifugation (9000 rpm, feed 1.3 m3/h, Clara 20, Alfa Laval, Lund, Sweden) or
by overnight sedimentation (4 ◦C) and batch centrifugation (10 min at 10,000× g, Sorvall
LYNX 6000, Thermo Scientific, Waltham, MA, USA) in the laboratory. In the latter case,
algae experienced fewer shear forces than during continuous centrifugation. As a result,
four different algae concentrates were obtained, and these were stored for 14 days. Algae
suspensions (15 mL) were stored in the dark at 8 ◦C with continuous shaking (orbital
movement 150 rpm) either for 7 or 14 days. Next, samples were aliquoted and stored at
−20 ◦C prior to chemical analysis. Samples for lipid analysis were freeze-dried before lipid
extraction (Section 2.2), while the other analyses (Sections 2.3 and 2.4) were performed
without a preceding freeze-drying step.

2.2. Lipid Analysis

The total lipid content was determined by the chloroform:methanol extraction of
freeze-dried algae samples as described by Ryckebosch et al. [12]. The free fatty acid (FFA)
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level was evaluated by the derivatization of FFA to fatty acid diethylamides as detailed by
Kangani et al. [13] and subsequent gas chromatography analysis.

2.3. Ethanol Analysis

Ethanol levels were analyzed by high-performance liquid chromatography using an
Agilent Hi-Plex H column (300× 7.7 mm, particle size 8 µm) connected to a refractive index
detector. After injection (20 µL), organic acids and ethanol were separated by isocratic
elution with 0.01 M H2SO4 (0.8 mL/min), where the column temperature was kept at 60 ◦C.

2.4. Organic Acid Analysis

Organic acids (lactic acid, acetic acid, succinic acid, propionic acid, and citric acid) were
analyzed by ultra-high-performance liquid chromatography–mass spectrometry. Diluted
algae concentrates were centrifuged (10 min, 10,000× g) and the supernatant was filtered
(0.2 µm) and injected (0.2 to 5 µL) on an Atlantis PREMIER BEH AX, 1.7 µm, 2.1 × 100 mm
column (Waters Corporation, Milford, MA, USA). The column was kept at 30 ◦C and eluted
(0.350 mL/min) with an aqueous 0.9% formic acid solution for 3 min, aqueous 0.9% formic
acid with 10 mM ammonium formate for 5 min, 80% acetonitrile with 0.9% formic acid and
20% of a 0.9% formic acid solution with 50 mM ammonium formate for 1 min, and 3 min
with an aqueous 0.9% formic acid solution. For detection, electrospray ionization (ESI) was
used with a cone voltage of 15 V, probe temperature at 600 ◦C, capillary voltage at 0.8 kV,
and a desolvation gas flow rate of 1000 l/h. Selected ion recording was performed after
ESI ionization in positive mode for acetic acid (m/z 61.0) and propionic acid (m/z 75.0)
and in negative mode for lactic acid (89.0 m/z), succinic acid (m/z 117.0), and citric acid
(m/z 191.0).

2.5. Statistics

Statistical analyses were carried out using Statistica version 12 (Dell Inc., Tulsa, OK,
USA, 2015). FFA analyses were performed at least in duplicate, and all other analyses in
triplicate. In the storage test, the impact of the (i) nutrient status, (ii) harvest method, and
(iii) storage time were studied using a full-factorial design. Factorial analysis of variance
(ANOVA) was used to evaluate the effects of these 3 factors on algae quality and to identify
interaction effects. The threshold significance level was set at 5%. In case of a positive
omnibus test, a posthoc Tukey multiple-comparison test was used to compare the different
levels within one factor. To explore the large set of data on the measured algae attributes
(organic acid levels, pH, lipid levels, and FFA levels), a principal component analysis
(PCA) was performed on the respective average values. For PCA calculations, data were
standardized by centering about the mean and scaling by the standard deviation.

3. Results
3.1. Algae Growth and Harvest

A Chlorella culture was either well-fed until harvest or received no nutrients during
the last week before harvest to study the impact of nutrient limitation. Growth profiles
(Supplementary Figure S1) and culture medium pH values (Supplementary Table S1) were
similar for both cultures during the 4-week growth period. Algae were harvested by either
batch centrifugation or continuous centrifugation to evaluate the impact of the harvest
method. Algae concentrates had a dry matter concentration ranging between 7 and 9% at
the start of the preservation test (Supplementary Table S2).

3.2. Short-Chain Fatty Acid and pH Levels

The total short-chain fatty acid levels were significantly affected by all studied variables
and most of their interactions (Supplementary Table S3). The harvest method (F = 350,
p < 0.001) and culture status (F = 325, p < 0.001) had the strongest impact. In general, higher
short-chain fatty acid levels were detected after continuous centrifugation than after batch
centrifugation, and higher levels were also observed in the temporarily unfed culture than
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in the well-fed culture (Figure 1a). Lactic acid and acetic acid were the main metabolites in
the temporarily unfed culture, while acetic acid and succinic acid were the main metabolites
in the well-fed culture (Figure 1).
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Figure 1. Short-chain fatty acid concentrations during algae storage. ANOVA analysis results can be
found in Supplementary Information (Supplementary Tables S3–S8). Values within one figure that
are not labeled by the same lowercase letter are significantly different. Error bars indicate standard
deviations on triplicate measurements. A small correction was made to account for differences in the
organic matter content at t0 (Supplementary Table S2); organic matter concentrations were divided
by the corresponding t0 organic matter concentration and multiplied by the average t0 organic
matter concentration.
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Lactic acid levels (Figure 1b) were mainly affected by the culture nutrient status at
harvest (F = 10,300, p < 0.001) and, to a smaller extent, by the harvest method (F = 117,
p < 0.001), time (F = 15, p < 0.001), and their interactions (Supplementary Table S4). Lactic
acid concentrations were higher in the temporarily unfed cultures, especially after harvest by
continuous centrifugation. Acetic acid (Figure 1c) was predominantly affected by the storage
time (F = 937, p < 0.001), harvest method (F = 829, p < 0.001), and their interaction (F = 426,
p < 0.001), although other variables had an impact as well (Supplementary Table S5). Succinic
acid levels were mainly affected by the culture nutritional status at harvest (F = 3283,
p < 0.001), with higher levels for the well-fed culture (Figure 1d), and were less influenced
by the other factors (Supplementary Table S6). Propionic acid concentrations became high
only for the well-fed culture after storage (Figure 1e, Supplementary Table S7). Citric acid
(Figure 1f) was only detected in the temporarily unfed algae. Ethanol levels are not shown
because most values were below the limit of quantification (LOQ, 48.6 mg/L). Ethanol was
only present in the temporarily unfed cultures at t0 (above the detection limit (24.3 mg/L)
but below LOQ) after continuous centrifugation and 7 days of storage (56.5 ± 3.9 mg/L),
and after batch centrifugation and 7 days of storage (53.5 ± 5.8 mg/L) and 14 days of
storage (50 ± 2.7 mg/L).

The pH of the algae concentrates (Figure 2) was mainly affected by the culture status
at harvest time (F = 25,435, p < 0.001, Supplementary Table S9), with clearly lower pH
values for temporarily unfed algae concentrates (4.87 ± 0.35) than for well-fed concentrates
(7.44 ± 0.24). The effect of the centrifugation method (F = 570, p < 0.001), storage time
(F = 27, p < 0.001), and the interaction effects (Supplementary Table S9) was smaller.
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Figure 2. pH values of algae concentrates during storage. Values that are not labeled by the same
lowercase letter are significantly different.

3.3. Lipid Analysis

Total lipid content was not significantly affected by any of the tested storage factors
(p > 0.05, Supplementary Table S10), with average lipid levels ranging between 21.4% and
24.8% of the dry matter (not shown).

The free fatty acid (FFA) levels were affected by the storage time (F = 30, p < 0.001), culture
status at harvest (F = 17, p = 0.001), and all possible interaction effects (Supplementary Table S11).
FFA levels increased with increasing storage time (Figure 3a). Moreover, FFA concentrations
were higher for the temporarily unfed algae than for algae that were well-fed until harvest
(Figure 3b), although the concentration difference was limited. The harvest method (con-
tinuous centrifugation versus batch centrifugation) had no significant impact (p = 0.872).
However, there was an interaction effect between the storage time, culture status at harvest,
and harvest method (p = 0.003, Figure 3c). After storage of the well-fed culture, FFA levels
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were lower after batch centrifugation than after continuous centrifugation, but this was not
seen for the nutrient-depleted culture.
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3.4. Correlation Analysis

To explore the entire dataset of algae attributes (organic acid levels, pH, lipid levels, and
FFA levels), a PCA was performed. PCA simplifies the analysis of a high-dimensional dataset by
transforming the data into fewer dimensions, the so-called principal components, where most of
the variation in the data can be described [14]. The cumulative proportion of variance accounted
for by the two first principal components was 76.1%, with the first and second factors accounting
for 52.8% and 23.3% of the variance, respectively (Supplementary Table S12). The pH, lactic
acid, citric acid, succinic acid, and total organic acid level were the main contributors of the
first factor, while acetic acid was the main contributor to the second factor (Figure 4a and
Supplementary Table S13). Projecting the data based on the first two principal components
(Figure 4b) shows that results from well-fed algae concentrates (orange markers) and those
from temporarily unfed algae concentrates (blue markers) form two distinct clusters along
the horizontal axis of the first principal component.
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The PCA analysis also suggests that there are several strong correlations between
the variables. The Spearman’s rank correlation coefficient (ρ) between average values
was calculated to quantify the degree of correlation (Supplementary Table S14). For the
variables that correlated the most (i.e., the nine highest ρ coefficients), scatterplots are
shown in Figure 5. The pH value correlated negatively with the lactic acid levels (ρ = −0.90,
Figure 5a), citric acid levels (ρ =−0.89, Figure 5b), and the sum of all measured organic acid
levels (ρ = −0.88, Figure 5c). Lactic acid levels correlated positively with citric acid levels
(ρ = 0.88, Figure 5d) and with the sum of all measured organic acid levels (ρ = 0.77, Figure 5e)
and correlated negatively with propionic acid levels (ρ =−0.83, Figure 5f) and with succinic
acid levels (ρ = −0.80, Figure 5g). Succinic acid levels correlated positively with propionic
acid levels (ρ = 0.83, Figure 5h) and negatively with citric acid levels (ρ = −0.82, Figure 5i).
There is again a clustering of the results of well-fed algae concentrates (orange markers)
and those of temporarily unfed algae concentrates (blue markers).
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4. Discussion

The aim of this work was to evaluate the impact of the nutritional status at harvest
time (temporarily unfed vs. well-fed until harvest) and of the harvest method (continuous
vs. batch centrifugation) on the preservation of Chlorella vulgaris biomass. The culture’s
nutritional status at harvest had clearly the largest impact on the studied algae parameters.
Its impacts on organic acid and pH levels are visualized in Figure 6.
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4.1. The Impact of Nutritional Status at Harvest

The well-fed and temporarily unfed algae formed two distinct clusters in the PCA
analysis. The most obvious difference was seen for the pH values (4.87 ± 0.35 for tem-
porarily unfed algae and 7.44 ± 0.24 for well-fed algae). Interestingly, the well-fed and
temporarily unfed algae cultures had still similar pH values a few hours before harvest
(7.2 and 7.6, respectively), while there was a clear pH difference at the start of the storage
test (i.e., a few hours after harvest). Apparently, only the combination of nutrient limitation
and algae harvest induced a strong pH decrease. One can speculate that the algae, once
weakened by the nutrient-deficient regime, were more prone to cell lysis during harvest.
This could result in the higher release of cell content and cell debris, increasing the avail-
ability of substrates for aerobic degradation (as long as O2 is available) and fermentative
degradation (once all O2 is consumed). The latter process can result in the production of
high organic acid levels and a pH decrease. Accordingly, pH values correlated with total
organic acid levels (ρ = −0.88) and lactic acid levels (ρ = −0.90), and high lactic acid levels
were noted for the temporarily unfed algae concentrates only. Lactic acid is usually not
a major product of green algal fermentation [15] but can be formed by several types of
bacteria, especially lactic acid bacteria. These lactic acid bacteria, particularly Lactobacillus
bacteria, thrive in acidic, carbohydrate-rich environments [16] and can outcompete with
other bacteria because they are more resistant to low pH values. The medium pH in turn
can steer the type of fermentation products that are being formed in anoxic environments
by bacteria [15] and algae [17]. Many bacteria produce mainly acetate, ethanol, formate,
and low levels of succinate at a neutral pH, while producing lactate instead of acetate
and formate in more acidic environments [15]. The type of organic acids being formed
by bacteria also depends on the available substrates. Ultimately, in the absence of O2,
most bacteria reduce partially oxidized metabolic intermediates, forming mainly lactate,
succinate, and ethanol, and excrete these metabolites together with formate and acetate [15].
Moreover, for algae, the fermentation pattern depends largely on the algae species and
on environmental conditions such as the available carbon source. Typical fermentation
products under anoxic conditions for green algae are acetate, ethanol, formate, glycerol,
lactate, H2, and CO2 in the case of starch fermentation [15].

It is also possible that the one-week no-feeding regime began to form the bacterial
community even before harvesting and therefore the algal–bacterial consortia responded
differently at harvest. The nitrate concentration, for instance, was suggested to be a
primary driver in the bacterial community composition of outdoor Nannochloropsis sp.
cultures [18]. Finally, several studies indicated that nutrient depletion may also increase the
algal production of extracellular polymeric substances (EPS), another possible fermentation
substrate. However, literature has emerged that offers contradictory findings, and the effect
of nutrient depletion on EPS appears not yet fully understood [19].

Taken together, the differences between temporarily unfed algae and well-fed algae
may be caused by different degrees of cell lysis during harvest and/or differences in the
composition of the bacterial community or by diverging EPS secretion. All these factors
can steer the interplay between the algal–bacterial consortium, fermentation metabolism,
and pH. Accordingly, temporarily unfed and well-fed algae formed two distinct clusters in
the PCA analysis (Figure 4b), with the pH as the main contributor to the first PCA factor
(Figure 4a) and correlating strongly with lactic acid (ρ = −0.90), citric acid (ρ = −0.89), total
organic acid (ρ = −0.88), and succinic acid (ρ = 0.76) levels. The temporarily unfed cluster
was associated with high levels of acetic and mainly lactic acid, and lower levels of citric
and succinic acid. The well-fed cluster, on the other hand, was associated with the presence
of acetic acid, succinic acid, and, from 7 days of storage onwards, propionic acid.

The observed differences between temporarily unfed and well-fed algae will have a
major influence on several algae quality attributes. Firstly, the low pH values will limit
the growth of many microorganisms, including many pathogens and most food spoilage
organisms [16]. This is obviously a beneficial effect when food or feed applications are
envisioned. Secondly, the reduced growth of most bacteria reduces the associated dry
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matter losses. Because of this, the conditions observed here (low pH and high lactic acid
levels) are exactly the conditions targeted during ensilage, which enables the long-term
storage (e.g., 180 days) of algae [20]. Thirdly, low pH values might inhibit the bacterial
formation of malodorous metabolites such as propionic acid and butyric acid. These two
organic acids have a strong off-odor and have been shown to contribute to the bad smell of
algae stored under inappropriate conditions [21]. Wendt et al. (2017) observed that adding
organic acids or inorganic acids reduced butyrate levels during the anaerobic incubation of
Scenedesmus obliquus. This was explained by the inhibition of butyrate-producing species
by the low pH. In another study, acetic acid addition (50 mM) prevented the increase
in propionic and butyric acid during the wet storage of Nannochloropsis concentrates. In
the current study, low pH values correlated with the absence of propionic acid seen in
nutrient-depleted algae (butyric acid was not measured).

Although nutrient deprivation is a well-known method to stimulate lipid accumula-
tion [10], nutrient limitation had no impact on the total lipid levels in this study. Possibly,
algae were under-active during the week of nutrient deficiency because of the poorer
weather conditions. Differences might become clearer when the nutrient supply is stopped
in conjunction with better weather conditions. The level of FFA, a measure for lipid hydrol-
ysis, was significantly affected by the nutrient status at harvest, and also by the storage
time. As expected [8,9,21], FFA levels generally increased with increasing storage time.
Balduyck et al. hypothesized that this is triggered by a loss of cell integrity induced at
harvest, resulting in increased contact between lipids and lipases [8]. As suggested above,
the nutrient limitation could have weakened the algae, and so enforced cell lysis during
harvest. Accordingly, temporarily unfed algae generally had higher FFA levels than well-
fed algae. However, differences were small in the current study, and all FFA levels were
rather low. Differences might become clearer when a less robust algae species is used.

4.2. The Impact of Harvest Method

PCA analysis revealed no clear clustering according to the harvest method (Figure 4b)
but, for some individual parameters, the harvest method had a significant impact according
to the factorial ANOVA analysis. The most obvious effect was seen on lactic acid and acetic
acid levels, but also the pH and total organic acid levels were affected. In general, higher
levels of lactic acid, acetic acid, and total organic acids were detected after continuous
centrifugation than after batch centrifugation. Again, these differences might be related
to the different degrees of fermentation and different levels of fermentation substrates
available, because of the different degrees of cell lysis. Indeed, one can expect that more
cell rupture takes place during continuous centrifugation as cells experience higher shear
forces than during batch centrifugation. However, this explanation is not consistent with
the lack of effect of the harvest method on FFA levels (p = 0.87). It is noteworthy that
not only the intracellular material released by cell lysis can feed fermentation processes,
but also extracellular polymeric substances (EPS). Some EPS are closely associated with
algae cells [19] and their removal efficiency may depend on the used harvest method. It is
also possible that a higher degree of cell lysis is needed to trigger FFA formation in robust
algae cells, while organic acid formation occurs more easily. In line with this, the storage
of Nannochloropsis concentrates in a previous study triggered no FFA increase in one test,
while organic acid levels (acetic acid and propionic acid) increased under the same storage
conditions [21]. In any case, the lack of effect seen here with C. vulgaris, which is considered
to have a rigid cell wall [22], does not exclude the possibility that gentle harvesting protects
the cells of more sensitive algae, such as Porosira glacialis [23] or T-Isochrysis [8], against
cell lysis and lipolysis. Batch centrifugation as applied here is, however, difficult to scale
up and to perform in a commercial production environment. Membrane filtration then
becomes a more attractive harvest method.
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5. Conclusions

Nutrient limitation had a major impact on the parameters monitored in this study.
Although there was no impact on lipid levels, nutrient limitation clearly reduced the pH
and favored the formation of lactic acid and, to a minor extent, of citric acid. In fact,
it created an environment similar to that of ensilage storage. The differences in algae
harvested by batch and continuous centrifugation were smaller, and mainly limited to
differences in lactic acid, acetic acid, and total organic acid levels and pH. In this regard,
the nutrient status should be considered when designing the algal growth and processing
chain. Nutrient limitation can lower the pH, which in turn can have positive effects such as
reducing the risk of pathogen growth and bacterial off-odor formation. However, a note of
caution is due here since algae had low light exposure in the last growth week and only
one algae species was tested in this study. Algae growth conditions can be expected to have
an important impact, as can the algae species.
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