001     1025138
005     20250204113836.0
024 7 _ |a 10.1088/2058-9565/ad35e4
|2 doi
024 7 _ |a 10.34734/FZJ-2024-02715
|2 datacite_doi
024 7 _ |a WOS:001195462400001
|2 WOS
037 _ _ |a FZJ-2024-02715
082 _ _ |a 530
100 1 _ |a Montanez-Barrera, Jhon Alejandro
|0 P:(DE-Juel1)194305
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Unbalanced penalization: a new approach to encode inequality constraints of combinatorial problems for quantum optimization algorithms
260 _ _ |a Philadelphia, PA
|c 2024
|b IOP Publishing
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1714583234_3667
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Solving combinatorial optimization problems of the kind that can be codified by quadratic unconstrained binary optimization (QUBO) is a promising application of quantum computation. Some problems of this class suitable for practical applications such as the traveling salesman problem (TSP), the bin packing problem (BPP), or the knapsack problem (KP) have inequality constraints that require a particular cost function encoding. The common approach is the use of slack variables to represent the inequality constraints in the cost function. However, the use of slack variables considerably increases the number of qubits and operations required to solve these problems using quantum devices. In this work, we present an alternative method that does not require extra slack variables and consists of using an unbalanced penalization function to represent the inequality constraints in the QUBO. This function is characterized by larger penalization when the inequality constraint is not achieved than when it is. We evaluate our approach on the TSP, BPP, and KP, successfully encoding the optimal solution of the original optimization problem near the ground state cost Hamiltonian. Additionally, we employ D-Wave Advantage and D-Wave hybrid solvers to solve the BPP, surpassing the performance of the slack variables approach by achieving solutions for up to 29 items, whereas the slack variables approach only handles up to 11 items. This new approach can be used to solve combinatorial problems with inequality constraints with a reduced number of resources compared to the slack variables approach using quantum annealing or variational quantum algorithms.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a BMBF 13N16149 - QSolid (BMBF-13N16149)
|0 G:(DE-Juel1)BMBF-13N16149
|c BMBF-13N16149
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Willsch, Dennis
|0 P:(DE-Juel1)167542
|b 1
700 1 _ |a Maldonado-Romo, A.
|0 0000-0002-6342-3508
|b 2
700 1 _ |a Michielsen, Kristel
|0 P:(DE-Juel1)138295
|b 3
773 _ _ |a 10.1088/2058-9565/ad35e4
|g Vol. 9, no. 2, p. 025022 -
|0 PERI:(DE-600)2906136-2
|n 2
|p 025022 -
|t Quantum science and technology
|v 9
|y 2024
|x 2058-9565
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1025138/files/FZJ-2024-02715.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1025138/files/FZJ-2024-02715.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1025138/files/FZJ-2024-02715.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1025138/files/FZJ-2024-02715.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1025138/files/FZJ-2024-02715.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1025138
|p openaire
|p open_access
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)194305
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)167542
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)138295
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2024
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a TIB: IOP Publishing 2022
|0 PC:(DE-HGF)0107
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-27
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-03
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21