001025140 001__ 1025140
001025140 005__ 20250317091735.0
001025140 0247_ $$2doi$$a10.1088/1361-648X/ad32de
001025140 0247_ $$2ISSN$$a0953-8984
001025140 0247_ $$2ISSN$$a1361-648X
001025140 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-02717
001025140 0247_ $$2pmid$$a38471158
001025140 0247_ $$2WOS$$aWOS:001204903500001
001025140 037__ $$aFZJ-2024-02717
001025140 082__ $$a530
001025140 1001_ $$0P:(DE-HGF)0$$aAceves Rodriguez, Uriel A$$b0
001025140 245__ $$aMagnetic exchange interactions at the proximity of a superconductor
001025140 260__ $$aBristol$$bIOP Publ.$$c2024
001025140 3367_ $$2DRIVER$$aarticle
001025140 3367_ $$2DataCite$$aOutput Types/Journal article
001025140 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1714633592_28347
001025140 3367_ $$2BibTeX$$aARTICLE
001025140 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001025140 3367_ $$00$$2EndNote$$aJournal Article
001025140 520__ $$aInterfacing magnetism with superconductivity gives rise to a wonderful playground for intertwining key degrees of freedom: Cooper pairs, spin, charge, and spin-orbit interaction, from which emerge a wealth of exciting phenomena, fundamental in the nascent field of superconducting spinorbitronics and topological quantum technologies. Magnetic exchange interactions (MEI), being isotropic or chiral such as the Dzyaloshinskii Moriya interactions (DMI), are vital in establishing the magnetic behavior at these interfaces as well as in dictating not only complex transport phenomena, but also the manifestation of topologically trivial or non-trivial objects as skyrmions, spirals, Yu-Shiba-Rusinov states and Majorana modes. Here, we propose a methodology enabling the extraction of the tensor of MEI from electronic structure simulations accounting for super- conductivity. We apply our scheme to the case of a Mn layer deposited on Nb(110) surface and explore proximity-induced impact on the MEI. Tuning the superconducting order parameter, we unveil potential change of the magnetic order accompanied with chirality switching. Owing to its simple formulation, our methodology can be readily implemented in state-of-the-art frameworks capable of tackling superconductivity and magnetism. Our findings opens intriguing exploration paths, where chirality and magnetism can be engineered depending on the conducting nature of magneto-superconducting interfaces. We thus foresee implications in the simulations and prediction of topological superconducting bits as well as in cryogenic superconducting hybrid devices involving magnetic units.
001025140 536__ $$0G:(DE-HGF)POF4-5211$$a5211 - Topological Matter (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001025140 536__ $$0G:(GEPRIS)462676712$$aDFG project 462676712 - iAFMskyrmionen- Intrinsische antiferromagnetische Skyrmionen aus ersten Prinzipien: Von der Stabilisierung, der Interaktion mit Defekten bis zum effizienten Nachweis (462676712)$$c462676712$$x1
001025140 536__ $$0G:(DE-Juel-1)ATMLAO$$aATMLAO - ATML Application Optimization and User Service Tools (ATMLAO)$$cATMLAO$$x2
001025140 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001025140 7001_ $$0P:(DE-Juel1)162225$$aGuimarães, Filipe Souza Mendes$$b1
001025140 7001_ $$0P:(DE-Juel1)168211$$aBrinker, Sascha$$b2
001025140 7001_ $$0P:(DE-Juel1)130805$$aLounis, Samir$$b3$$eCorresponding author
001025140 773__ $$0PERI:(DE-600)1472968-4$$a10.1088/1361-648X/ad32de$$n29$$p23$$tJournal of physics / Condensed matter$$v36$$x0953-8984$$y2024
001025140 8564_ $$uhttps://juser.fz-juelich.de/record/1025140/files/2306.02906.pdf$$yOpenAccess
001025140 8564_ $$uhttps://juser.fz-juelich.de/record/1025140/files/Aceves_Rodriguez_2024_J._Phys.%20_Condens._Matter_36_295801.pdf$$yOpenAccess
001025140 8564_ $$uhttps://juser.fz-juelich.de/record/1025140/files/2306.02906.gif?subformat=icon$$xicon$$yOpenAccess
001025140 8564_ $$uhttps://juser.fz-juelich.de/record/1025140/files/2306.02906.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001025140 8564_ $$uhttps://juser.fz-juelich.de/record/1025140/files/2306.02906.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001025140 8564_ $$uhttps://juser.fz-juelich.de/record/1025140/files/2306.02906.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001025140 8564_ $$uhttps://juser.fz-juelich.de/record/1025140/files/Aceves_Rodriguez_2024_J._Phys.%20_Condens._Matter_36_295801.gif?subformat=icon$$xicon$$yOpenAccess
001025140 8564_ $$uhttps://juser.fz-juelich.de/record/1025140/files/Aceves_Rodriguez_2024_J._Phys.%20_Condens._Matter_36_295801.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001025140 8564_ $$uhttps://juser.fz-juelich.de/record/1025140/files/Aceves_Rodriguez_2024_J._Phys.%20_Condens._Matter_36_295801.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001025140 8564_ $$uhttps://juser.fz-juelich.de/record/1025140/files/Aceves_Rodriguez_2024_J._Phys.%20_Condens._Matter_36_295801.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001025140 8767_ $$d2024-04-12$$eHybrid-OA$$jPublish and Read
001025140 909CO $$ooai:juser.fz-juelich.de:1025140$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
001025140 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b0$$kFZJ
001025140 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162225$$aForschungszentrum Jülich$$b1$$kFZJ
001025140 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130805$$aForschungszentrum Jülich$$b3$$kFZJ
001025140 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5211$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001025140 9141_ $$y2024
001025140 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001025140 915pc $$0PC:(DE-HGF)0107$$2APC$$aTIB: IOP Publishing 2022
001025140 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-23
001025140 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2023-08-23
001025140 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001025140 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-23
001025140 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001025140 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-11$$wger
001025140 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS-CONDENS MAT : 2022$$d2024-12-11
001025140 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-11
001025140 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-11
001025140 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-11
001025140 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-11
001025140 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-11
001025140 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-11
001025140 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
001025140 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
001025140 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x2
001025140 980__ $$ajournal
001025140 980__ $$aVDB
001025140 980__ $$aUNRESTRICTED
001025140 980__ $$aI:(DE-Juel1)IAS-1-20090406
001025140 980__ $$aI:(DE-Juel1)PGI-1-20110106
001025140 980__ $$aI:(DE-Juel1)JSC-20090406
001025140 980__ $$aAPC
001025140 9801_ $$aAPC
001025140 9801_ $$aFullTexts