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Abstract

Interfacing magnetism with superconductivity gives rise to a wonderful playground for inter-
twining key degrees of freedom: Cooper pairs, spin, charge, and spin-orbit interaction, from which
emerge a wealth of exciting phenomena, fundamental in the nascent field of superconducting spinor-
bitronics and topological quantum technologies. Magnetic exchange interactions (MEI), being
isotropic or chiral such as the Dzyaloshinskii-Moriya interactions (DMI), are vital in establish-
ing the magnetic behavior at these interfaces as well as in dictating not only complex transport
phenomena, but also the manifestation of topologically trivial or non-trivial objects as skyrmions,
spirals, Yu-Shiba-Rusinov states and Majorana modes. Here, we propose a methodology enabling
the extraction of the tensor of MEI from electronic structure simulations accounting for super-
conductivity. We apply our scheme to the case of a Mn layer deposited on Nb(110) surface and
explore proximity-induced impact on the MEI. Tuning the superconducting order parameter, we
unveil potential change of the magnetic order accompanied with chirality switching. Owing to its
simple formulation, our methodology can be readily implemented in state-of-the-art frameworks
capable of tackling superconductivity and magnetism. Our findings opens intriguing exploration
paths, where chirality and magnetism can be engineered depending on the conducting nature of
magneto-superconducting interfaces. We thus foresee implications in the simulations and predic-
tion of topological superconducting bits as well as in cryogenic superconducting hybrid devices

involving magnetic units.
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I. INTRODUCTION

Despite the hostility between the superconducting and magnetic orders, together they
are known to bring to life an abundance of interesting physics, such as in-gap effects such
as Majorana[IH3], Andreev, and Yu-Shiba-Rusinov (YSR) states[4H§]. These phenomena
are currently in the spotlight given their potential applications in the field of topological
quantum computing[9-11]. In the context of superconducting spinorbitronics, the interplay
of the underlying Cooper pairs with the three electronic degrees of freedom—spin, charge
and spin-orbit interaction—can trigger tantalizing opportunities for cryogenic quantum tech-

nologies.

Since Majorana zero modes are essential for topological quantum computing, numer-
ous platforms have been proposed for their physical realization: magnetic islands[12],
skyrmions[I3] and spin chains[I4], among others. In the latter two examples, the non-
collinearity of the magnetic moments is a crucial ingredient for the emergence of the coveted
in-gap states. For non-collinearity to occur, there must be competition between the magnetic
interactions in the system. We need thus methods to quantify and analyze these interactions
within a realistic description of the electronic structure of the given systems. Moreover, we
need to understand how are these interactions affected by superconductivity and, in turn,

how superconductors are influenced by the magnetic structures in their proximity.

The microscopic theory to describe conventional superconductivity goes back more than
60 years, first by the hands of John Bardeen, Leon Cooper, and Robert Schrieffer (BCS)[15]
in 1957. Few years later, the Bogoliubov—de Gennes (BdG) method[I6HI9] has been
proposed and is currently an extensively used framework to investigate superconducting
systems with impurities, superconductor/non-superconductor heterostructures, Josephson
junctions, and topological superconductors, to name some notable examples[20-H24]. The
BdG method is a mean-field approximation that relies upon Bogoliubov—Valatin transfor-
mations that take the Hamiltonian from a particle space into a particle-hole one, and it
has been used in a variety of situations from tight-binding[25 26] to density functional
theory (DFT)[27, 28]. Especially in latter, there have been efforts to computationally an-
alyze superconductor/non-superconductor heterostructures based on a realistic description
of the electronic structure[21], 29-31]. On the experimental front, the activity regarding

magnetic/superconductor interfaces has been intense as well, with much focus on Majorana
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modes and other end-states on atomic chains[14], 32H36]. In this paper, we provide a simple
and detailed demonstration on how to quantify the magnetic exchange interactions (MEI)
from electronic structure simulations of realistic materials accounting for electron-hole cou-
pling channels originating from the superconducting order in the BdG method, spin-orbit
coupling and multi-orbital hybridization phenomena. We thus go beyond fundamental basic
models suggested in the past[37, [38]. Furthermore, we apply the proposed methodology to a
magnetic interface with a superconducting substrate: a Mn monolayer deposited on Nb(110)
surface and analyse the different contributions to the MEI emerging from the proximity to

a superconductor.

This paper is organized as follows: In Subsection [TA] we introduce our multi-orbital
tight-binding theory necessary for the incorporation of the BAG equations. Subsection [[TB]
contains a discussion and description of the theoretical formalism enabling the quantifica-
tion of the bilinear tensor of magnetic exchanges in the context of the BAG method. We
present a simple formula to calculate the bilinear magnetic exchanges within the Green
function formalism in the particle-hole space, and establish how this formula converges to
the same one as in the metallic case[39, 40] in absence of superconductivity. In Section
a prototypical system composed of one monolayer of Mn (110) on top of a 5-atom-thick
slab of Nb (110) is used as a proof-of-concept to which we apply our theory. We perform
self-consistent calculations to investigate the effect that the superconductivity in Nb has
on the magnetic properties of the Mn atoms and vice-versa. We find the magnetic ground
state of the Mn monolayer to be row-wise antiferromagnetic, agreeing with recent exper-
imental and theoretical results[41]. We proceed to test a wide range of electron-phonon
coupling strengths that directly influences the size of the superconducting gap, evaluating
the resulting self-consistent gap parameters and the corresponding magnetic moments in
Mn. The effect of superconductivity in the Heisenberg exchange interactions for different
gap sizes is scrutinized in Subsection [[IT Al We find that for a realistic value of the super-
conducting gap, the change induced by superconductivity is minimal and therefore does
not have important repercussions for the case of Mn/Nb(110). However, for gap values of
the order of the Heisenberg exchange, we observe a change in the magnetic ground state,
from row-wise antiferromagnetic to ferromagnetic. Finally, in Subsection [[ITB] we focus on
the Dzyaloshinskii-Moriya interaction (DMI) and observe that the corrections due to super-

conductivity are also relatively small in this case. Nevertheless, we notice that in our case



the chirality of the corrective term is opposite to the one at the non-superconducting case.
Utilizing a multiple-scattering expansion, we identify how the intertwining of the supercon-
ducting parameter, intra-atomic spin-orbit and exchange interactions impact the sign of the

Heisenberg exchange as well as the DMI.

II. THEORETICAL DESCRIPTION

To investigate the characteristics and effects of superconducting magnetic structures, we
explored a system consisting of a slab of Nb (110) with a thickness of 5 layers, with a
monolayer of Mn on top, as shown in Figs. [I{a) and (b). Fig. [[b) represents the magnetic
ground state, which is antiferromagnetic, found after our self-consistent simulations. We
chose Nb as a substrate given its large superconducting gap[42] (2A = 3.8 meV), critical
temperature of T = 9.3 K[42], and most importantly, given the development of recent
experimental techniques to fabricate clean surfaces of Nb (110)[43]. The latter work led to a
breakthrough, and since its publication the Nb(110) surface became a standard playground
for the exploration of potential Majorana and YSR states hosted by adatoms[28| 44-40],
nanowires[14, 36], [47], two-dimensional diluted structures [48] and thin films[41], [49] 50]. In
the following, we describe the theoretical framework that we developed to quantify magnetic

interactions at the vicinity of a superconductor.

A. Tight-binding and the Bogoliubov—de Gennes method

Before presenting the method to extract magnetic exchange interactions, which is the
focus of our work, we introduce the multi-orbital electronic Hamiltonian and the Bogoliubov—
de Gennes method. The magnetic and superconducting system may be described by the
Hamiltonian

Hg = % { Z Hgg,ﬂn(k)cluo(k)cﬁun(k) - Z )‘aMCLuT(k)CZ{ui(_k>ca#¢<_k/)caﬂ(k/)} ’

af,on,uv,k a,uv,kk’
(1)

with ¢, (k) and cg,,(k) being the creation and annihilation operators of electrons with
wave vector k and spin ¢ in the orbitals i or layer o and spin 7 in the orbitals v or layer 3,
respectively. IV is the number of wave vectors in the Brillouin zone. k is a reciprocal vector

in in the xy-plane (within each layer) where two-dimensional periodic boundary conditions
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FIG. 1. (a) Side view of a slab of five Nb (110) layers with a Mn monolayer on top, blue spheres
represent Nb atoms, lilac spheres Mn. (b) Top view. Each layer has the structure of a centered
rectangular lattice. The arrows show the magnetic ground state which for this case is row-wise
antiferromagnetic. (c) Schematics of different Green functions after perturbative expansion with
respect to the superconducting order parameter. (d) Superconducting gap parameter as function of
A, the vertical dotted line is at A=3.264meV and indicates the lowest value of A for which TITAN
converged to a state with a finite A. All calculations were done at 4.2 K with 15000 k-points. (d)

Magnetic moments of the Mn layer as a function of .

are assumed. The second element on the right-hand side corresponds to the BCS term,
allowing electrons to form Cooper pairs and, therefore to give rise to superconductivity. Its
strength, given \,, € R, originates from the electron-phonon coupling and may depend on
the orbital p of layer . HJj; (k) is the non-superconducting Hamiltonian, which can be

further separated into

H"™ (k)= Hgg”(k)ao + 0 - e, BEM (k)65 + 0 - B ()64, (2)

afB,on o

where Hg’é” is the spin-independent tight-binding term, the second term comprises the intra-
atomic exchange interactions (originating from a Hubbard-like contribution[51], [52]), and the
last term describe the spin-orbit interaction. The hopping parameters for Nb and Mn were

obtained from first-principles calculations [53].
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In the mean-field approximation, Eq. simplifies to

1 v
' :N Z { Hgﬁ an aua(k)cﬁun(k)
k

af,on,uv (3>

= 3 (A () (k) + Aauwk)%(—m)} ,

with
1

Aap = /\auﬁ Z(Cam(—k)cam(k)% Ao = Aauﬁ Z(CLMT(’@>CZ¢W(_’€)>= (4)
k k

A, is known as the superconducting gap parameter. For clean superconductors it is half of
the superconducting gap, as it defines the necessary energy to scatter Cooper pairs (which
live at the Fermi level)[54]. It is important to note that for each choice of A,, and BZ-[XC]“ “ the
final values for A,, and the magnetic moments m* in the ground state are obtained self-
consistently. This means that even though it seems to be linearly proportional to A, this is
not the case in practice as seen in Fig. [1| (d). This leads to a more realistic characterization
of materials as no determined state is enforced to the system, and they can then evolve
after self-consistency into their ground state. In this work, we restrict ourselves to only two
different values for \,,, namely, a constant \,, = A for all the orbitals of the Nb layers, and
Aap = 0 for all y in the Mn one.

To diagonalize the Hamiltonian in Eq. (3]) we use a Bogoliubov—Valatin transformation[19],

thus transferring the original Hamiltonian from an electron representation to an electron-hole

one. The transformation is given by

Capo(k) = Yl (k) + 0in (k)Y chyo(k Z uns () + vi, (k). (5)

where the tilde indicates that the sums run only over the states with positive energy[19] [55].
This restriction in the sum is done to counteract the doubling of the degrees of freedom
originated from the change of basis. After the transformation, we land in a system where
the new particles (sometimes called bogolons[56]) are constituted by mixtures of electron
and hole operators. The transformation in Eq. (5] is canonical, this means that the new

operators v, and v} fulfill the same anticommutation relations as ¢, and ¢, namely

(s} = {08901 =0, {48, v} = G- (6)
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After the transformation, we arrive at a set of equations of the form[19]
> Hiid" (k)b (k) = En(k)ay (K), (7)
B

where the Bogoliubov—de Gennes Hamiltonian is given by

HY (k) ~ Ep  H". (k) 0 AT
0 Agul —Hosn (k) + Er —Higy (=F)
AW 0 —H (k) —HL (k) + Erp

(8)
It is important to notice that due to the transformation given in Eq. , the hole-space
change the wave vector arguments from k to —k. The eigenvector of Eq. is

Er in Eq. is the Fermi energy and it is placed in the diagonal such that the Fermi level
is at zero for the BAG system.

Structurally we can consider Hgd*g as subdivided into four parts; namely, blocks of
electron-electron, electron-hole, and hole-hole interactions. The main diagonal consists of
non-hybrid interactions, while the antidiagonal terms contain only the superconducting gap
parameter that hybridizes electrons and holes. For simplicity in the discussions, we break

down the BAG Hamiltonian as follows

HE (k) = Y (k) — Ep  HY . (k) Y 0 —Agl
ap,py v v ) af,uv 3
HS,B,H(k) Hgﬁ,u(k) — Er AV | 0
thﬁl (k) = _HSE}T<_k> + EF _Hggjkﬂr(_k) th — 0 AZ.UI[
ap,py V¥ Uk ) ap,uv *
_Hgﬂ7¢T(_k) _H&Lﬁ,u(_k) + Er -A;, L0

To avoid confusion from handling too many indices we will drop them for these submatrices
whenever the context allows it. Thus, we write the BAG Hamiltonian in the following form:
Hee Heh

Hpyc = e— (10)



From Eq. , we can obtain the corresponding retarded Green function via
GBd(;(k, E + Z?’/) == (E — HBdg(k) + in)_l. (11)

Gpac(E+in) in turn is a matrix that for the sake of simplicity we also consider as subdivided

into four blocks as in Eq.

. B Gee Geh o
w000 (12)
When the system is not superconducting A = 0, the Hamiltonian given in Eq. be-

comes diagonal in particle-hole space (i.e., H®" and H"® vanish). Consequently Gpqq is also

diagonal (G = G"* = 0), and the non-superconducting system is described by G*.

B. Bilinear magnetic exchange tensor and the BdG method

Mapping the magnetic interactions from the electronic structure simulations of a realistic
system into model Hamiltonians gives us the possibility of isolating different phenomena and
analysing each of them separately depending on the underlying mechanims. Here we focus

on the extended Heisenberg model, represented by
1 . .
Hyy, = _5261"\71‘]"8]’: (13)
)

where e; is the direction of the magnetic moment for atom ¢ and [J;; is the bilinear tensor
of magnetic exchange interactions with the magnetic moment for atom j. This Hamiltonian

can be divided into three terms with different symmetries|57]

()l T+ T (Tl T~ T
Jyg= e s = 2 Y 2 D = S it 14
3 oY 2 3 ’ ! 2 (14)
Using these definitions, Eq. (13| can also represented as
1 . 1 e . 1 SN
HHb = _52‘]1362 “ej — 5281 . Jij ‘e — §ZD (ei X 6]'). (15)
ij ij ij

The first term on the right-hand side (Heisenberg exchange) favours ferro- or antiferromag-
netic alignments depending on the sign of J. The second one is the traceless anisotropic part
of J;; induced by spin-orbit coupling. Finally, the last item in Eq. corresponds to the

DMI, which is finite when inversion symmetry is broken and requires spin-orbit coupling. It



may induce a relative rotation in the magnetic moments of neighbouring atoms and is vital
for the stabilization of magnetic textures such as skyrmions[5860]. In this work we focus
only on the Heisenberg exchange and the DMI, since Jj; is negligible.

The components of the DMI are extracted as follows[57]

0 D. -D,
Diy=|-D, 0 D, |- (16)
D, —-D, 0

Having a realistic description of the magnetic interactions of the system through these terms
is instrumental for the understanding and the development of upcoming technologies that
rely on magnetism, such as spintronic devices[61] with magnetic domain walls[62], spin-
tronic diodes[63], [64], and superconductor/ferromagnet systems for quantum computing[65].
Although the purely magnetic scenario has been intensely investigated, that is no longer the
case when the structure contains a superconductor. Here, Cooper pairs enter the picture
through the coupling between the electronic and hole states, which is not taken into account
by the basic theory, developed exclusively for metals. To analyze those cases we need to
account for the potential mutual impact of superconductivity and magnetism.

There are several techniques to obtain the tensor J;; from electronic structure simulations,
one of the most common being the infinitesimal rotations method[39], which presents a way
to map energies from the electronic structure into energies on an extended Heisenberg model.
The basic idea behind this approach is to perturb the magnetic moments at two different
locations ¢ and j, and quantify the resultant change in energy. To get the bilinear tensor
of magnetic exchanges J;; we take the second order term of the energy change. For a non-
superconducting system, such change (given a perturbation potential §V') is represented

by[39, 40, 66, [67]

SE = —%Im / T aey %Tr[G(e)éV]p. (17)

where p describes the order of the expansion and Tt is the trace over the site, spin and orbital
spaces. This formula is based on the expansion of the band energy in a perturbative fashion,
which is a well established technique. In order to follow its derivation, we refer the readers
to the aforementioned literature. The extension of the matrix space by the Bogoliubov—de

Gennes equations imposes changes on the Green functions as well as on the perturbation



potential. Within this formalism Eq. becomes

5 = %Im / " deZ% tr {O[Gipaa (€)0V]7) (18)

p

where the new trace (tr) runs over electron-hole space in addition to the site, spin and orbital
ones. O is a matrix in electron-hole space, whose function in Eq. is to isolate the purely

electronic terms, and it is given by

I 0
0= . (19)
00

The tensor of bilinear magnetic exchanges is obtained by taking the second-order term of

the expansion of Eq. , that is

O*Ej
kg 2
jj 861'(96]' ( O)
as expected from Eq. [13] with
1 r
B = %GImTr/ deGpac(€)6V Gpac(€)dV. (21)

Here, the shape of the dispersion potential 4V must also be generalized by varying the

magnetization orientation vector €; in the BdG Hamiltonian in Eq. . This results in

sVe 0
oV = , (22)
0 ovh
where
SV = -5V = —(B™o - de;)*. (23)

Collecting these results into Eq. , we obtain

1 €F
Jij = 0B;; = ——ImTry, / de [BXo - 5e,GS5(e) BMa - 5e,;G%(e)
2m o ! ! (24)

—BMo - 5e,G5} (e) BI*a* - be; Gl (e)]

For non-superconducting systems, GU¢(e) and GS(e) vanish and so does the second term
in the right-hand side of Eq. , leading to the resulting equation that is the same as for
the non-superconducting case. Nevertheless, it is important to notice that when A > 0, not

only is the second term finite, but also the first term gets renormalized by the presence of

10



the superconducting gap. When analyzing the resulting MEI it is often useful to separate
both terms in the right hand side of Eq. , here we will do so in the following form

T = T+ T

ee 1 - XC ce XC ce
J5 = —%ImTrLS/_ de B*g . oe, Gy (e)B[ lo - de; G (e), (25)

[e.9]

1 F
jij.h — %ImTrLs/ de B¥g . 5eiG§;(e)B[XC}*U* . 6ejG?ie(e).

—o0

Utilizing perturbation theory, we expect a second order correction to G** and G™ due to
superconductivity, while the electron-hole parts of the Green function G*" and G"® would at
least experience a first-order correction involving a possible sign change (see Fig.|[1|(c)), which
could counteract the electron-electron contribution to the magnetic exchange interaction.
This can be easily grasped by utilising the perturbative expansion of the Dyson equation
that related the Green function, g, associated to the Hamiltonian with A = 0 to G for which
A is finite. The Dyson equation reads

G =g+ gAG (26)
thus
Gcc ~ gco 4 gCCAghhA*gCC (27)
th ~ ghh 4 ghhAgeeA*ghh (28)
Geh ~ geeAghh (29)
Ghe s ghA* e, (30)

To summarize the theoretical scheme, we first proceed to the electronic simulations of a
given material without including the superconducting order parameter. Once the ground
state is found, we extract the associated Green functions and compute the tensor of magnetic
exchange interactions following the infinitesimal rotation method. Knowing the interactions,
we can determine the magnetic ground state. The full procedure is repeated once the

superconducting order parameter is included.

III. RESULTS

To ascertain how the superconducting gap on the material influences the magnetic states,

we selected a large range of values for A on the Nb slab, ranging from 2.45eV to 8.16eV.
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The calculations were performed with a broadening of the energy levels of 0.113 meV, which
should mimic a temperature of 4.2 K. For bulk Nb at this temperature and A = 2.45eV, we
found a superconducting gap parameter of ~ 1.8 meV, which is close to the realistic values
found by experiments (from &~ 1.41 meV to ~ 1.57meV[6]).

In Fig. [1] (d), we display the resulting self-consistent gap parameters A at the Nb layer
adjacent to the Mn layer attained for each value of A\. For this system, we observe that the
strength needed to open the superconducting gap are larger compared to the one in bulk
Nb, for which A = 2.45¢eV already opens a gap. Here, the lowest electron-phonon coupling
strength to produce a superconducting state is 3.26eV, resulting in a gap parameter of
A = 6.25meV. The resulting growth of the self-consistent A with respect to A is not linear,
and although the coupling strength is in the order of eV, the resulting gaps are of the same
order of magnitude as the ones reported experimentally[41]. We note that this is enabled by
self-consistency of our simulations. A one-shot calculation leads to a gap of the same order
than .

We show the immediate impact superconductivity has on the magnetic moments of the
Mn atoms in Fig. 1] (e). The magnetic moment experiences a total change of about 0.25 up
starting from 3.80 up in the metallic regime and intriguingly increases to reach a maximum of
4.07 up when the gap is about 5.30 meV before experiencing a decrease for larger gaps. This
observed behavior is induced by the non-trivial impact of A, simulating here the electron-

phonon coupling, on the electronic structure.

A. Symmetric magnetic exchange

According to our convention in Eq. , a positive J;; favours a parallel alignment as it
leads to lower (negative) energies, while negative .J;; favours anti-parallel alignment. The red
points in Fig. 2| (a) represent the MEI for the normal (non-superconducting) case. While the
strongest interaction coming from the nearest neighbour interaction is antiferromagnetic, the
next-nearest neighbour interactions are ferromagnetic. Since the crystal lattice for Mn(110)
is centered rectangular these MEI lead to a magnetic ground state which is row-wise antifer-
romagnetic as shown in Fig.[1| (b). In Fig. 2| (a) we also display the Heisenberg exchange for
the system when superconductivity is present (blue points). In this case, A = 3.26eV, the

smallest value in the investigated grid that leads to a finite gap parameter (A = 6.25 meV; as
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a reference, the measured value for bulk Nb is in a range from ~ 1.41 meV to 1.57meV|[6§]).

The difference between the interactions in the normal and superconducting systems is
presented in Fig. [2 (b). One can notice that the maximum change in the symmetric part of
the MEI is in the order of meV, which is small in comparison to the values of J;; themselves.
Interestingly, enabling superconductivity at the interface does not have a uniform impact
on the magnetic exchange interactions as function of distance. At short distances, a small
decrease in the absolute value of the magnetic interaction is identified. In the particularly
investigated interface, however, the magnetic ground state stays unperturbed and the row-
wise antiferromagnetic ordering in the Mn monolayer prevails, even after including effects
derived from superconductivity. Experimentally, Roberto lo Conte et al.[41] observed a
row-wise antiferromagnetic ground state, where they theoretically obtain a row-wise antifer-
romagnetic ground state for the non-superconducting case, and experimentally observe that

the magnetic ground state remains like that even when the Nb(110) slab is superconducting.

To uncover the possible effects that superconductivity may cause in the magnetic states,
we artificially increase A to 8.16 eV such that A = 295 meV. Such a scenario where A is one
order of magnitude larger than the nearest neighboring magnetic interaction looks at first
sight unrealistic but it can correspond to a diluted lattice as realized recently experimentally
with Cr adatoms sitting on Nb(110) surface [48]. In that case, the magnetic interactions are
rather weak since the magnetic atoms are not nearest neighbors and interact magnetically
via the substrate through RKKY-interactions.

Although the gap is large, the magnetic moments on the Mn layer (3.75up) are still on
the order of the ones in the non-superconducting case (3.80up. See Fig.|[1|(e)). The resulting
Heisenberg interaction is displayed in Fig. |2| (¢), both for the normal (red) and supercon-
ducting (blue) states. Their differences can be seen in Fig. [2| (d), in which we recognize
crucial changes—the largest one being the nearest neighbour interaction that changes sign
and switches from antiferromagnetic to ferromagnetic. This leads to a dramatic impact
on the magnetic ground state, which switches from the row-wise antiferromagnetic to a
ferromagnetic one.

While the previous figures show the extreme cases of low and high superconductivity in
relation to the magnetic interactions, Figs. [3| (a)-(c) present a complete depiction of how the

Heisenberg exchange as a function of the distance is affected by the value of A\. The electron-
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FIG. 2. (a) Symmetric exchange of the normal (red) vs superconducting (A = 6.25meV, blue)
states. (b) Difference between the symmetric magnetic exchanges in the normal (Jy) vs the
superconducting regime (Jg), when A = 6.25meV. (c) Symmetric exchange of the normal vs

superconducting (A = 295meV) states. (d) Difference between Jy and Jg when A = 295meV.

All calculations were done at 4.2 K, with 15,000 k-points.

hole contribution to the Heisenberg exchange for A = 0 vanishes, as expected, and hence
the total Heisenberg exchange is given only by the electron-electron one. Additionally, we
notice that the electron-hole part is mostly negative, favouring antiferromagnetism. When
focusing on the first two nearest neighbors (given by the first two columns of each plot), we
detect a change in the magnetic ground state, from antiferromagnetic (blue) alignment to
ferromagnetic (red). It is interesting to note that this does not originate from the electron-
hole contribution, but rather from the changes experienced by the electron-electron term.

These changes are caused by the shift of the bands as A increases.

Performing a multiple-scattering expansion of the Green functions involved in defining the
magnetic exchange interactions, in the same spirit than the approach undertaken in [67, 69~
72, we end up with systematic corrections illustrated in Fig. [4] (a)-(b). The derivations

are based on the Green functions expanded in Eqs.??. For the symmetric part, we expect a
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second order correction due to the superconducting order parameter. Therefore the electron-
electron part of the Heisenberg exchange is modified by interference effects occurring from
the electron-hole and hole-electron propagation when mediating the magnetic interaction
between two sites ¢ and j. The electron-hole part, however, inherently involves the scattering
of a hole at the intra-atomic exchange of a given site j. such a hole-scattering is automatically
accompanied with a minus sign, which could then explain the tendency of the electron-hole

part to favor antiferromagnetism.
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FIG. 3. (a) Total exchange interaction as given by Eq. , as each of its contributions separately
as defined in Eq. : (b) electron-electron contribution J¢ (c) electron-hole contribution J¢".
(d) Polar plot (6 [Deg] vs |D| [meV]) showing the evolution of the total DMI vector coming from
Eq. as a function of X for one of the four nearest neighbours (the remaining cases are similar).
(e) Evolution of the DMI vector derived from the electron-electron term J;5°. (f) Evolution of the
DMI vector derived from the electron-hole term j;;h We can see that D and D" tend to have

opposite orientations. All calculations were done at 4.2 K, with 15,000 k-points.
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B. Dazyaloshinskii-Moriya interaction

Even though the possible effects of superconductivity on the Heisenberg exchange inter-
action may lead to interesting outcomes, one realizes soon that in magnetic systems the
correction is mostly not sufficient to heavily impact the magnetic state, given that the orig-
inal interaction tends to be large. The DMI in turn is most of the times smaller that the
Heisenberg exchange, and the impact of the superconducting state might be larger there.
Although the DMI has most of the times low values compared to the Heisenberg one, this
interaction is important in the realm of non-collinear magnetism and it is responsible for
stabilizing complex magnetic structures, influencing skyrmion chirality, as well as being in-
strumental in the study of spin waves[66]. For the case of our system when A = 6.25 meV
the DMI vector is small |D| = 0.37meV with an even smaller electron-hole component
| D" = 25.7peV. Therefore, to further the impact of superconductivity we also analyzed
the cases with larger superconducting gaps. Analyzing the DMI on Mn/Nb(110), we observe

that the out-of-plane component (D,) is negligible, ensuing an in-plane D.

In Figs. 3| (d)-(f), we examine the in-plane vector D for one of the four nearest neighbours
in the Mn monolayer. Here we detect that the electron-hole term tends to go in the opposite
direction to the electron-electron DMI. Thus, both terms have opposite chiralities, thus,
favouring different kinds of magnetic textures. This effect opens options such as switching
between magnetic states by strengthening or weakening the superconducting order of the
system at hand. In Fig. |4 (e) we show D for the system with A = 295meV, as well as its
electron-electron and electron-hole components. We notice that the chiralities are opposite,

and the electron-hole term slightly dominates.

Similarly to the symmetric exchange interaction, we scrutinized on the basis of pertur-
bation theory, how the superconducting order parameter, intra-atomic exchange and spin-
orbit coupling affect the DMI, as illustrated schematically in Figs. {4 (¢) and (d). The DMI
emerges from the scattering at a site hosting spin-orbit coupling. Therefore the propagators
in Eq. [25| can be expanded in first-order with respect to spin-orbit coupling, which leads to
the different processes depicted in Figs. 4| (¢) and (d). We notice that besides possible in-
terference effects induced by the different electron and hole propagators, the hole-scattering
at an intra-atomic exchange interaction can provide a sign change to the original chirality

pertaining to the electron-electron DMI, while this can happen for the electron-hole part
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FIG. 4. Duality of magnetic exchange interactions impacted by the superconducting order pa-
rameter. There are several scattering events that influence the exchange interactions emerging in
Eqgs. The lines represent Green functions, thick for finite A and SOC, thin when the latter
are not included. Intra-atomic exchange interactions (B, and —BX for electrons and holes
respectively). Scattering from electron to hole (A) and vice versa (A*). And finally, for the DMI
there is the spin-orbit interaction (B¢, and —B[**d for electrons and holes respectively). (a)
Electron-electron symmetric exchange. This term gets a second order correction with respect to
A. (b) Electron-hole symmetric exchange. This term has a sign change given the intra-site interac-
tion with the hole. (c) Electron-electron DMI. This term has two corrections, one of them catches
a minus sign coming from the spin-orbit interaction with a hole. (d) Electron-hole DMI. The first
term gets a sign flip twice, while the second does it just once. (e) Total D (red), D¢ (golden),
and D" (blue) for the case with A =295 meV.

due to hole-scattering at the intra-atomic exchange and spin-orbit coupling.
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IV. CONCLUSIONS

We have introduced a method for extracting the bilinear tensor of magnetic exchange
interactions within the Bogoliubov-de Gennes (BdG) formalism, utilizing infinitesimal ro-
tation of magnetic moments. This novel approach has provided insights into the intricate
interplay between superconductivity, magnetism, and spin-orbit interaction, unraveling re-
markable potential effects on both the Heisenberg exchange and the Dzyaloshinskii-Moriya

interactions.

Through rigorous self-consistent simulations based on parameters derived from ab initio
calculations, our investigation has captured the intricacies of the electronic structure in the
Mn monolayer on Nb(110) surface system. By tuning the electron-phonon coupling and
thereby the superconducting state, we have demonstrated the potential pivotal influence of
the superconducting state on the magnetic ground state, specifically through the Heisen-
berg exchange. Furthermore, intriguing modifications in the chirality of the Dzyaloshinskii-
Moriya interactions have been unveiled. Within the confines of Mn monolayer deposited
on Nb(110) and for experimentally consistent gap sizes, we have concluded that the impact
of superconductivity on the magnetic ground state remains minimal, leaving it largely un-
perturbed. However, the implications of our findings could be of importance for the case
where the superconducting gap is of the order of magnitude than the magnetic exchange
interactions. This could be realized in the context of diluted magnetic structures, where the
magnetic atoms are not nearest neighbors, as realized recently with Cr adatoms on Nb(110)

surface [30], 48].

The versatility of our method enables its application in various schemes based on Green
function techniques, thereby facilitating exploration of complex magneto-superconducting
interfaces. These endeavors hold immense potential for uncovering novel and non-trivial
effects of superconductivity in topological magnetic and superconducting materials, where
intricate magnetic interactions may play a decisive role. The exploration of complex mag-
netic structures, such as skyrmions or spin chains, in conjunction with superconductivity,
opens up possibilities for the discovery of novel states and quasiparticles with implications
for topological quantum computing, driving the progress of cutting-edge technological ap-

plications.
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