001025143 001__ 1025143
001025143 005__ 20250203103223.0
001025143 0247_ $$2doi$$a10.1149/MA2023-02371718mtgabs
001025143 0247_ $$2ISSN$$a1091-8213
001025143 0247_ $$2ISSN$$a2151-2043
001025143 037__ $$aFZJ-2024-02720
001025143 082__ $$a540
001025143 1001_ $$0P:(DE-HGF)0$$aYang, Danan$$b0
001025143 1112_ $$aThe Electrochemical Society$$cSan Francisco$$d2024-05-26 - 2024-05-30$$wUSA
001025143 245__ $$aNumerical Reconstruction of Proton Exchange Membrane Fuel Cell Gas Diffusion Layers
001025143 260__ $$c2023
001025143 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s1714556461_11807
001025143 3367_ $$033$$2EndNote$$aConference Paper
001025143 3367_ $$2BibTeX$$aINPROCEEDINGS
001025143 3367_ $$2DRIVER$$aconferenceObject
001025143 3367_ $$2DataCite$$aOutput Types/Conference Abstract
001025143 3367_ $$2ORCID$$aOTHER
001025143 520__ $$aFlooding and dehydration reduce stability and power performance in Proton Exchange Membrane Fuel Cells (PEMFCs). The Gas Diffusion Layer (GDL) plays a crucial role in facilitating reactant gas transport and removing product water from the electrode. To suit various PEMFCs, GDLs with different shapes have been commercialized. The impact of the GDL structure on the surface-tension-driven water transport behavior remains poorly understood. However, this is one important aspect that can be controlled by proper design. In this study, the GDL performance is investigated by comparing curved and straight carbon fibers within the region. Specifically, an image-processing method extracts porosity, domain size, and fiber diameter from an experimental image-based GDL reconstruction. These parameters are utilized by in-house developed computer codes to stochastically reconstruct curved and straight carbon fiber GDLs, respectively. The real and reconstructed GDLs are compared in terms of pore size distribution, tortuosity, and permeability. Liquid transport in these GDLs and corresponding gas channels is simulated using a volume of fluid method in OpenFOAM 7.0.Figure 1(a) presents the T-shaped simulation domain and top view of three GDLs. Figure 1(b) displays the Cumulative Density Function (CDF) of the pore size distribution for the three GDLs, revealing that the main difference between the three GDLs lies in the pore diameter range of 10-30 µm. Upon completion of the research program, we aim to identify the influence of fiber shape on the GDL transport properties as well as the water behavior inside them.
001025143 536__ $$0G:(DE-HGF)POF4-1222$$a1222 - Components and Cells (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001025143 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x1
001025143 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001025143 7001_ $$0P:(DE-HGF)0$$aGarg, Himani$$b1
001025143 7001_ $$0P:(DE-Juel1)157835$$aBeale, Steven B.$$b2$$ufzj
001025143 7001_ $$0P:(DE-Juel1)168242$$aAndersson, Martin$$b3
001025143 773__ $$0PERI:(DE-600)2438749-6$$a10.1149/MA2023-02371718mtgabs$$gVol. MA2023-02, no. 37, p. 1718 - 1718$$x2151-2043$$y2023
001025143 909CO $$ooai:juser.fz-juelich.de:1025143$$pVDB
001025143 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157835$$aForschungszentrum Jülich$$b2$$kFZJ
001025143 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1222$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001025143 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x1
001025143 9141_ $$y2024
001025143 920__ $$lyes
001025143 9201_ $$0I:(DE-Juel1)IEK-13-20190226$$kIEK-13$$lIEK-13$$x0
001025143 980__ $$aabstract
001025143 980__ $$aVDB
001025143 980__ $$aI:(DE-Juel1)IEK-13-20190226
001025143 980__ $$aUNRESTRICTED
001025143 981__ $$aI:(DE-Juel1)IET-3-20190226