001     1025146
005     20250203103223.0
024 7 _ |a 10.1149/11204.0049ecst
|2 doi
024 7 _ |a 1938-5862
|2 ISSN
024 7 _ |a 1938-6737
|2 ISSN
024 7 _ |a 2151-2051
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-02723
|2 datacite_doi
037 _ _ |a FZJ-2024-02723
082 _ _ |a 540
100 1 _ |a Yang, Danan
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Numerical Reconstruction of Proton Exchange Membrane Fuel Cell Gas Diffusion Layers
260 _ _ |a Pennington, NJ
|c 2023
|b [Verlag nicht ermittelbar]
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1714723824_26324
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Stochastic reconstruction is widely employed for effective and flexible imitation of Gas Diffusion Layers (GDLs), e.g., to facilitate the study of their properties. However, the reconstruction often overlooks crucial factors such as fiber curvature, fiber stack arrangement, and fiber anisotropy. Consequently, the impact of these structural characteristics remains poorly understood. In this study, an in-house reconstruction procedure is developed based on the periodic surface model. This procedure enables the generation of GDLs with either straight or curved fibers, layer-by-layer or random arrangement, and different probabilities of through-plane fiber orientation angles. The porosity, domain size, and fiber diameter are extracted from an experimental image-based GDL and utilized as input data for the reconstruction. Furthermore, the different GDLs are compared in terms of pore size distribution and through-plane porosity distribution. It is concluded that introducing proper selections of these fiber features gives the reconstruction more realistic properties.
536 _ _ |a 1222 - Components and Cells (POF4-122)
|0 G:(DE-HGF)POF4-1222
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Garg, Himani
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Beale, Steven B.
|0 P:(DE-Juel1)157835
|b 2
700 1 _ |a Andersson, Martin
|0 P:(DE-Juel1)168242
|b 3
773 _ _ |a 10.1149/11204.0049ecst
|g Vol. 112, no. 4, p. 49 - 61
|0 PERI:(DE-600)2251888-5
|n 4
|p 49 - 61
|t ECS transactions
|v 112
|y 2023
|x 1938-5862
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1025146/files/Yang_2023_ECS_Trans._112_49.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1025146/files/Yang_2023_ECS_Trans._112_49.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1025146/files/Yang_2023_ECS_Trans._112_49.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1025146/files/Yang_2023_ECS_Trans._112_49.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1025146/files/Yang_2023_ECS_Trans._112_49.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1025146
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)157835
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1222
|x 0
914 1 _ |y 2024
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-09-02
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-13-20190226
|k IEK-13
|l IEK-13
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-13-20190226
981 _ _ |a I:(DE-Juel1)IET-3-20190226


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21