001025148 001__ 1025148
001025148 005__ 20250203103223.0
001025148 0247_ $$2doi$$a10.26089/NumMet.v24r209
001025148 0247_ $$2ISSN$$a0507-5386
001025148 0247_ $$2ISSN$$a1726-3522
001025148 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-02725
001025148 037__ $$aFZJ-2024-02725
001025148 082__ $$a510
001025148 1001_ $$0P:(DE-Juel1)129878$$aKulikovsky, Andrei$$b0
001025148 245__ $$aРекуррентная формула для вычисления импеданса катодного каталитического слоя в топливном элементе с полимерным электролитом
001025148 260__ $$c2023
001025148 3367_ $$2DataCite$$aText
001025148 3367_ $$0PUB:(DE-HGF)4$$2PUB:(DE-HGF)$$aCommunication$$bcomm$$mcomm$$s1714564105_11807
001025148 3367_ $$2BibTeX$$aMISC
001025148 3367_ $$2ORCID$$aOTHER
001025148 3367_ $$2DINI$$aOther
001025148 3367_ $$04$$2EndNote$$aPersonal Communication
001025148 520__ $$aA recurrent formula for estimating an impedance of the cathode catalyst layer with fast oxygen transport in a polymer electrolyte fuel cell is derived. The catalyst layer is divided into N sub-layers and application of the charge conservation law enables to obtain the nonlinear recurrent relation Zn = f(Zn-1), where Zn is the accumulated impedance of all sub-layers up to the n-th one. Numerical solution of this relation gives the total impedance of the catalyst layer with taking into account variation of the static overpotential of the oxygen reduction reaction along the depth of this layer. The model is simple, robust and two orders of magnitude faster than the standard model based on numerical solution of the differential equation.
001025148 536__ $$0G:(DE-HGF)POF4-1222$$a1222 - Components and Cells (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001025148 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001025148 773__ $$0PERI:(DE-600)2510675-2$$a10.26089/NumMet.v24r209$$gno. 2, p. 127 - 131$$x1726-3522$$y2023
001025148 8564_ $$uhttps://juser.fz-juelich.de/record/1025148/files/AVB%2C%2Bkulikovsky_ns.pdf$$yOpenAccess
001025148 8564_ $$uhttps://juser.fz-juelich.de/record/1025148/files/AVB%2C%2Bkulikovsky_ns.gif?subformat=icon$$xicon$$yOpenAccess
001025148 8564_ $$uhttps://juser.fz-juelich.de/record/1025148/files/AVB%2C%2Bkulikovsky_ns.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001025148 8564_ $$uhttps://juser.fz-juelich.de/record/1025148/files/AVB%2C%2Bkulikovsky_ns.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001025148 8564_ $$uhttps://juser.fz-juelich.de/record/1025148/files/AVB%2C%2Bkulikovsky_ns.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001025148 909CO $$ooai:juser.fz-juelich.de:1025148$$pdriver$$pVDB$$popen_access$$popenaire
001025148 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129878$$aForschungszentrum Jülich$$b0$$kFZJ
001025148 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1222$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001025148 9141_ $$y2024
001025148 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001025148 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001025148 9201_ $$0I:(DE-Juel1)IEK-13-20190226$$kIEK-13$$lIEK-13$$x0
001025148 9801_ $$aFullTexts
001025148 980__ $$acomm
001025148 980__ $$aVDB
001025148 980__ $$aUNRESTRICTED
001025148 980__ $$aI:(DE-Juel1)IEK-13-20190226
001025148 981__ $$aI:(DE-Juel1)IET-3-20190226