001025149 001__ 1025149
001025149 005__ 20250203103308.0
001025149 0247_ $$2doi$$a10.1016/j.eml.2023.101971
001025149 0247_ $$2WOS$$aWOS:000931846700001
001025149 037__ $$aFZJ-2024-02726
001025149 1001_ $$0P:(DE-HGF)0$$aHe, Jie$$b0
001025149 245__ $$aHybrid quantum-classical model of mechano-electrochemical effects on graphite-electrolyte interfaces in metal-ion batteries
001025149 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2023
001025149 3367_ $$2DRIVER$$aarticle
001025149 3367_ $$2DataCite$$aOutput Types/Journal article
001025149 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1714586982_3947
001025149 3367_ $$2BibTeX$$aARTICLE
001025149 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001025149 3367_ $$00$$2EndNote$$aJournal Article
001025149 520__ $$aElectrochemical double layer (EDL) in rechargeable metal-ion batteries is important to ion intercalation and deintercalation (IID) reactions. Mechanical factors of metal-ion batteries shape the local reaction condition in the EDL and further influence the kinetics of IID reactions. This so-called mechano-electrochemical (MEC) effects on IID reactions are treated in this work based on a hybrid quantum–classical (HQC) framework that accounts for the coupling of ion and electron transfer, EDL structure, and mechanical factors. Under well-defined approximations, an analytical expression for the activation energy of IID reactions is obtained, where the MEC effects are explicitly expressed. In particular, a mechano-electrostatic coupling coefficient is defined to describe how the mechanical deformation and structural size influence the IID reactions via changing the local reaction condition in the EDL. The present work represents a step towards microscopic understanding of the MEC effects on the kinetics of IID reactions in rechargeable metal-ion batteries.
001025149 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001025149 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001025149 7001_ $$0P:(DE-Juel1)174537$$aYang, Le$$b1
001025149 7001_ $$aHuang, Jun$$b2
001025149 7001_ $$0P:(DE-HGF)0$$aSong, Wei-Li$$b3
001025149 7001_ $$0P:(DE-Juel1)196759$$aChen, Hao-Sen$$b4$$ufzj
001025149 773__ $$0PERI:(DE-600)2810750-0$$a10.1016/j.eml.2023.101971$$gVol. 59, p. 101971 -$$p101971 -$$tExtreme mechanics letters$$v59$$x2352-4316$$y2023
001025149 909CO $$ooai:juser.fz-juelich.de:1025149$$pVDB
001025149 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)196759$$aForschungszentrum Jülich$$b4$$kFZJ
001025149 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001025149 9141_ $$y2024
001025149 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEXTREME MECH LETT : 2022$$d2023-10-26
001025149 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-26
001025149 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-26
001025149 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-26
001025149 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-26
001025149 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-26
001025149 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-26
001025149 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-26
001025149 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-26
001025149 920__ $$lyes
001025149 9201_ $$0I:(DE-Juel1)IEK-13-20190226$$kIEK-13$$lIEK-13$$x0
001025149 980__ $$ajournal
001025149 980__ $$aVDB
001025149 980__ $$aI:(DE-Juel1)IEK-13-20190226
001025149 980__ $$aUNRESTRICTED
001025149 981__ $$aI:(DE-Juel1)IET-3-20190226