001025151 001__ 1025151
001025151 005__ 20250204113837.0
001025151 0247_ $$2doi$$a10.1002/smll.202310737
001025151 0247_ $$2ISSN$$a1613-6810
001025151 0247_ $$2ISSN$$a1613-6829
001025151 0247_ $$2pmid$$a38396324
001025151 0247_ $$2WOS$$aWOS:001169720000001
001025151 037__ $$aFZJ-2024-02728
001025151 082__ $$a620
001025151 1001_ $$aChen, Bin$$b0
001025151 245__ $$aInterface‐Engineered NiFe/Ni‐S Nanoparticles for Reliable Alkaline Oxygen Production at Industrial Current: A Sulfur Source Confinement Strategy
001025151 260__ $$aWeinheim$$bWiley-VCH$$c2024
001025151 3367_ $$2DRIVER$$aarticle
001025151 3367_ $$2DataCite$$aOutput Types/Journal article
001025151 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1734075161_7859
001025151 3367_ $$2BibTeX$$aARTICLE
001025151 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001025151 3367_ $$00$$2EndNote$$aJournal Article
001025151 520__ $$aUsing powder-based ink appears to be the most suitable candidate for commercializing the membrane electrode assembly (MEA), while research on the powder-based NPM catalyst for anion exchange membrane water electrolyzer (AEMWE) is currently insufficient, especially at high current density. Herein, a sulfur source (NiFe Layered double hydroxide adsorbed) confinement strategy is developed to integrate Ni3S2 onto the surface of amorphous/crystalline NiFe alloy nanoparticles (denoted NiFe/Ni-S), achieving advanced control over the sulfidation process for the formation of metal sulfides. The constructed interface under the sulfur source confinement strategy generates abundant active sites that increase electron transport at the electrode-electrolyte interface and improve ability over an extended period at a high current density. Consequently, the constructed NiFe/Ni-S delivers an ultra-low overpotential of 239 mV at 10 mA cm−2 and 0.66 mAunder an overpotential of 300 mV. The AEMWE with NiFe/Ni-S anode exhibits a cell voltage of 1.664 V @ 0.5 A cm−2 and a 400 h stability at 1.0 A cm−2.
001025151 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001025151 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001025151 7001_ $$0P:(DE-Juel1)168385$$aLiu, Tao$$b1
001025151 7001_ $$00000-0003-4723-2645$$aZhang, Junfeng$$b2
001025151 7001_ $$0P:(DE-HGF)0$$aZhao, Shuo$$b3
001025151 7001_ $$0P:(DE-HGF)0$$aYue, Runfei$$b4
001025151 7001_ $$0P:(DE-HGF)0$$aWang, Sipu$$b5
001025151 7001_ $$0P:(DE-HGF)0$$aWang, Lianqin$$b6
001025151 7001_ $$0P:(DE-HGF)0$$aChen, Zhihao$$b7
001025151 7001_ $$0P:(DE-HGF)0$$aFeng, Yingjie$$b8
001025151 7001_ $$aHuang, Jun$$b9
001025151 7001_ $$0P:(DE-Juel1)186628$$aYin, Yan$$b10$$eCorresponding author$$ufzj
001025151 7001_ $$0P:(DE-HGF)0$$aGuiver, Michael D.$$b11
001025151 773__ $$0PERI:(DE-600)2168935-0$$a10.1002/smll.202310737$$gp. 2310737$$n24$$p2310737$$tSmall$$v20$$x1613-6810$$y2024
001025151 8564_ $$uhttps://juser.fz-juelich.de/record/1025151/files/Small%20-%202024%20-%20Chen%20-%20Interface%E2%80%90Engineered%20NiFe%20Ni%E2%80%90S%20Nanoparticles%20for%20Reliable%20Alkaline%20Oxygen%20Production%20at%20Industrial.pdf
001025151 909CO $$ooai:juser.fz-juelich.de:1025151$$pVDB
001025151 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186628$$aForschungszentrum Jülich$$b10$$kFZJ
001025151 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001025151 9141_ $$y2024
001025151 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2023-10-25$$wger
001025151 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-25
001025151 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-25
001025151 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSMALL : 2022$$d2024-12-27
001025151 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-27
001025151 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-27
001025151 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-27
001025151 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-27
001025151 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-27
001025151 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bSMALL : 2022$$d2024-12-27
001025151 920__ $$lyes
001025151 9201_ $$0I:(DE-Juel1)IEK-13-20190226$$kIEK-13$$lIEK-13$$x0
001025151 980__ $$ajournal
001025151 980__ $$aVDB
001025151 980__ $$aI:(DE-Juel1)IEK-13-20190226
001025151 980__ $$aUNRESTRICTED
001025151 981__ $$aI:(DE-Juel1)IET-3-20190226