001     1025154
005     20250804115220.0
024 7 _ |a 10.1615/ComputThermalScien.2024049108
|2 doi
024 7 _ |a 1940-2503
|2 ISSN
024 7 _ |a 1940-2554
|2 ISSN
024 7 _ |a WOS:001278475800001
|2 WOS
037 _ _ |a FZJ-2024-02731
082 _ _ |a 530
100 1 _ |a Beale, Steven B.
|0 P:(DE-Juel1)157835
|b 0
|e Corresponding author
245 _ _ |a REMARKS ON THE PHYSICAL BASIS FOR THE CONSTRUCTION OF DIFFUSION FLUX TERMS IN FINITE-VOLUME EQUATIONS
260 _ _ |a Redding, Conn.
|c 2024
|b Begell House
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1714638359_23768
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The formulation for the diffusion terms in unstructured meshes is compared to that previously derived by the present authors and others for structured body-fitted meshes in terms of direction cosines between the normal and tangential directions. The so-called 'over-relaxed' approach is entirely equivalent/identical, subject to the caveat that the gradient of a scalar field is computed as the product of the scalar and the local surface area vector per unit volume summed (integrated) over the cell volumes, rather than by bilinear field interpolation. The physical/mathematical basis for the 'minimum correction' and 'orthogonal correction' approaches is not consistent with the present authors' derivation, which is in agreement with previous observations. The derivation for a structured mesh here differs from previous work in that physical, rather than mathematical components/projections of vectors are considered, thus filling a significant historical gap in the literature.
536 _ _ |a 1222 - Components and Cells (POF4-122)
|0 G:(DE-HGF)POF4-1222
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Malin, M. R.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Marschall, H.
|0 P:(DE-HGF)0
|b 2
773 _ _ |a 10.1615/ComputThermalScien.2024049108
|g Vol. 16, no. 3, p. 71 - 87
|0 PERI:(DE-600)2663032-1
|n 3
|p 71 - 87
|t Computational thermal sciences
|v 16
|y 2024
|x 1940-2503
856 4 _ |u https://juser.fz-juelich.de/record/1025154/files/CTS1603%285%29-49108.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1025154/files/CTS1603%285%29-49108.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1025154/files/CTS1603%285%29-49108.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1025154/files/CTS1603%285%29-49108.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1025154/files/CTS1603%285%29-49108.jpg?subformat=icon-640
|x icon-640
|y Restricted
909 C O |o oai:juser.fz-juelich.de:1025154
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)157835
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1222
|x 0
914 1 _ |y 2024
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b COMPUT THERM SCI : 2022
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-27
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-13-20190226
|k IEK-13
|l IEK-13
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-13-20190226
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IET-3-20190226


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21