Hauptseite > Publikationsdatenbank > Impulsivity Classification Using EEG Power and Explainable Machine Learning > print |
001 | 1025165 | ||
005 | 20250203103224.0 | ||
024 | 7 | _ | |a 10.1142/S0129065723500065 |2 doi |
024 | 7 | _ | |a 0129-0657 |2 ISSN |
024 | 7 | _ | |a 1793-6462 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2024-02742 |2 datacite_doi |
024 | 7 | _ | |a 36632032 |2 pmid |
024 | 7 | _ | |a WOS:000912369500001 |2 WOS |
037 | _ | _ | |a FZJ-2024-02742 |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Hüpen, Philippa |0 P:(DE-Juel1)179395 |b 0 |e Corresponding author |
245 | _ | _ | |a Impulsivity Classification Using EEG Power and Explainable Machine Learning |
260 | _ | _ | |a Singapore [u.a.] |c 2023 |b World Scientific Publ. Co. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1714729205_30347 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
536 | _ | _ | |a 5252 - Brain Dysfunction and Plasticity (POF4-525) |0 G:(DE-HGF)POF4-5252 |c POF4-525 |f POF IV |x 0 |
536 | _ | _ | |a GRK 2150 - GRK 2150: Neuronale Grundlagen der Modulation von Aggression und Impulsivität im Rahmen von Psychopathologie (269953372) |0 G:(GEPRIS)269953372 |c 269953372 |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Kumar, Himanshu |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Shymanskaya, Aliaksandra |b 2 |
700 | 1 | _ | |a Swaminathan, Ramakrishnan |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Habel, Ute |0 P:(DE-Juel1)172840 |b 4 |u fzj |
773 | _ | _ | |a 10.1142/S0129065723500065 |g Vol. 33, no. 02, p. 2350006 |0 PERI:(DE-600)1498197-X |n 02 |p 2350006 |t International journal of neural systems |v 33 |y 2023 |x 0129-0657 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1025165/files/h%C3%BCpen-et-al-2023-impulsivity-classification-using-eeg-power-and-explainable-machine-learning.pdf |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1025165/files/h%C3%BCpen-et-al-2023-impulsivity-classification-using-eeg-power-and-explainable-machine-learning.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1025165/files/h%C3%BCpen-et-al-2023-impulsivity-classification-using-eeg-power-and-explainable-machine-learning.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1025165/files/h%C3%BCpen-et-al-2023-impulsivity-classification-using-eeg-power-and-explainable-machine-learning.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1025165/files/h%C3%BCpen-et-al-2023-impulsivity-classification-using-eeg-power-and-explainable-machine-learning.jpg?subformat=icon-640 |
909 | C | O | |o oai:juser.fz-juelich.de:1025165 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)172840 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |9 G:(DE-HGF)POF4-5252 |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-08-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2023-08-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-08-24 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b INT J NEURAL SYST : 2022 |d 2023-08-24 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-08-24 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-08-24 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b INT J NEURAL SYST : 2022 |d 2023-08-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-08-24 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-08-24 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)INM-10-20170113 |k INM-10 |l Jara-Institut Brain structure-function relationships |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)INM-10-20170113 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|