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Abstract
A variety of enhanced sampling (ES) methods predict multidimensional free energy landscapes associated with biological and other 
molecular processes as a function of a few selected collective variables (CVs). The accuracy of these methods is crucially dependent 
on the ability of the chosen CVs to capture the relevant slow degrees of freedom of the system. For complex processes, finding such 
CVs is the real challenge. Machine learning (ML) CVs offer, in principle, a solution to handle this problem. However, these methods 
rely on the availability of high-quality datasets—ideally incorporating information about physical pathways and transition states— 
which are difficult to access, therefore greatly limiting their domain of application. Here, we demonstrate how these datasets can be 
generated by means of ES simulations in trajectory space via the metadynamics of paths algorithm. The approach is expected to 
provide a general and efficient way to generate efficient ML-based CVs for the fast prediction of free energy landscapes in ES 
simulations. We demonstrate our approach with two numerical examples, a 2D model potential and the isomerization of alanine 
dipeptide, using deep targeted discriminant analysis as our ML-based CV of choice.
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Significance Statement

The free energy landscape of complex (bio-)molecular processes can be described in enhanced sampling (ES) simulations as a function 
of suitable low-dimensional collective variables (CVs) which measure the progress of the process. Identifying the CVs can be very chal
lenging, and, most often, this is the main bottleneck of these calculations. Here, by combining machine learning and enhanced path 
sampling, we can straightforwardly collect data on the physical pathways of the investigated processes in a robust manner. These 
data, which would be difficult to obtain with standard simulation approaches in conformational space, allow us to train highly effi
cient CVs, extending dramatically the domain of applicability of ES techniques for the investigation of biological and other complex 
systems.
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Introduction
Enhanced sampling (ES) methods (1, 2) are a powerful tool to inves
tigate rare events in molecular systems, such as conformational 
changes of large biomolecular complexes, drug binding to receptor 
targets or phase transitions in materials (3–5). To obtain the free en
ergy landscape describing these complex phenomena, a large class 
of ES methods work under the assumption that a few collective var
iables (CVs), functions s(R) of the atomic coordinates, exist that are 
able to provide a concise description of the transformation of inter
est. An external potential V(s) can then be defined, able to drive the 
rare transitions and allowing a reconstruction of the free energy 
profile. These methods include, among many others, umbrella 
sampling (6), hyperdynamics (7), well-tempered metadynamics 

and the On-the-fly Probability Enhanced Sampling (OPES) method 

(8–10), adaptive biasing force (11), or variationally enhanced sam
pling (12). We note here, that in cases where sufficiently long un
biased trajectories are available, researchers have designed 
general and elegant methods to describe the thermodynamics of 
a system without making use of CVs (13, 14). However, being able 
to access the Boltzmann distribution from unbiased molecular 
dynamics (MD) simulations is the exception rather than the rule.

The success of CV-based ES algorithms relies on the highly non
trivial choice of the CVs, which must be able not only to discrim
inate between the different metastable states but also, and most 
importantly, to describe the progress of the reaction. Recently, 
machine learning (ML)-based methods have been shown to be 
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effective in delivering CVs that fulfill these two criteria (15–24). 
However, as in any ML approach, the results depend dramatically 
on the quality of the underlying data. This leads to a 
chicken-and-egg problem: for good results, one ideally needs 
data on the relevant metastable states and transitions between 
them, which, in turn, would require knowledge of a CV that allows 
their thorough sampling (25). As a result, most data-driven CV ap
proaches still struggle to adequately accelerate the important mo
tions in complex systems. To improve their efficiency, it has been 
previously recognized that including data from the transition 
state plays an important role in promoting the adequate descrip
tion of the transition dynamics (26).

To harvest this essential data from the transition path ensemble, 
we shift our attention from enhanced sampling methods in config
uration space to approaches focused on the direct sampling of the 
transition pathways. Among many such methods based on the stat
istical mechanics of trajectories (27–29), we consider the recently 
developed metadynamics of paths (MoP) algorithm (30). In contrast 
to the popular transition path sampling (31, 32), which has also been 
used for the identification of CVs (23, 24, 33, 34), MoP allows for the 
unconstrained exploration of multiple reactive paths connecting 
metastable states without the need for an initial path guess. This 
is achieved by performing metadynamics simulations in the space 
of all trajectories, making use of special CVs defined in trajectory 
space (CVt hereafter). As we will see below, a crucial property of 
MoP is its robustness in sampling the transition path ensemble 
with respect to a suboptimal choice of this CVt, considerably miti
gating the chicken-and-egg problem described above.

We show that the data obtained from MoP can be used to train 
an efficient ML-based CV in configuration space (CVc hereafter) to 

speed up standard metadynamics simulations. Here, among 
many different, powerful ML approaches, we use the deep targeted 
discriminant analysis (DeepTDA) supervised learning approacha

(35) previously developed to build CVcs. Briefly, DeepTDA trains a 
classifier that discriminates configurations belonging to different 
metastable states by mapping them into well-separated, user- 
defined locations in latent space. This approach can be used to in
corporate not only data from multiple metastable states, but also 
from reactive trajectories connecting them (26, 35). The mapping 
is done such that the resulting 1D CVc describes the system’s pro
gress from one basin to the other through the transition state re
gion (see Fig. 1b  and Materials and Methods for more details).

In practice, our proposed, iterative protocol (Fig. 1b) consists of 
the following steps: 

Step 1: Standard MD simulations lead to kinetically trapped con
formations in the (assumed to be known) initial and final ba
sins (Fig. 1b). A CVc is obtained by training a DeepTDA model 
to discriminate these 2 states

Step 2: Starting from such CVc, a CVt is built and MoP simula
tions are performed

Step 3: The resulting trajectories are analyzed to identify newly 
discovered metastable states and reactive paths, and a new 
DeepTDA CV is trained including these data. If the latest 
MoP simulation found a path between initial and final states, 
the algorithm ends: it provides a complete map of the inter
mediate states and pathways of the molecular transform, 
which generally allows building efficient CVc. Otherwise, 
step 2 is repeated with the new CVc.

A B

d
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ii.
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c

configuration
space

trajectory
space

a

b

Fig. 1. a) A discrete stochastic trajectory consists of the time series {Rn} of configurations visited sequentially by the system. b) To each discretized 
trajectory can be assigned a well-defined Boltzmann-like statistical weight e−βVeff ({Rn }). The effective potential is isomorphic to the potential energy of an 
elastic polymer. c) One can generate all possible discretized trajectories of a physical system by evolving the dynamics of a fictitious polymer subject to 
the force Fn = −∇Rn Veff . Metadynamics can be used to accelerate the sampling of reactive pathways by choosing an appropriate CV defined in trajectory 
space. Here, we adopt as CVt the generalized polymer end-to-end distance S of Eq. 3, defined as the difference between the Deep-TDA CVc evaluated in the 
final and in the starting configuration of the polymer. d) Iterative procedure for DeepTDA CVc training. (i) Unbiased training datasets are generated in the 
initial (A) and final (B) states. A DeepTDA CVc sTDA is trained to map the two datasets into well-separated Gaussian distributions. (ii) A MoP run is 
performed and the generated paths are classified as trapped (blue and black) and reactive (violet) paths, based on the value of |S|. New datasets are 
identified from newly discovered metastable states and from configurations occupying the transition state region. A multistate DeepTDA CVc is trained to 
map these configurations into well-separated distributions and an updated end-to-end distance CVt is built. (iii) The desired outcome of a MoP run using 
the refined end-to-end CVt is depicted, showing sampling of trapped paths in all metastable states (in blue) as well as reactive pathways connecting 
different basins (in violet). This data can be used to design an optimal CVc in configuration space to converge the free energy landscape in a standard 
metadynamics simulation.
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The method is designed to iteratively refine both CVc and CVt. 
More details on how the latter are constructed are provided below.

The article is organized as follows: after an introduction to MoP 
and the definition of CVt, we apply our iterative protocol (i) to a 2D 
model potential, used to test its applicability to multistate sys
tems, and (ii) to the isomerization of alanine dipeptide in vacuum, 
which, despite its simpler two-state nature, provides a nontrivial 
test case on a molecular system.

Metadynamics of paths
In standard MD simulations, a discrete trajectory—consisting of the 
time series {Rn}n=1,N of configurations visited by the system—is gen
erated in a sequential manner, due to the inherent seriality of the 
time evolution process (see Fig. 1a). MoP circumvents this prob
lem—which rests at the base of the poor scaling of MD algorithms 
—and achieves parallelization in time by sampling directly from 
the phase space of all possible trajectories. The method applies to 
stochastic (Brownian) trajectories and exploits the isomorphism be
tween the path probability distribution, p[A(R(t))], and the 
Boltzmann distribution of a fictitious elastic polymer (see Fig. 1b):

p[A(R(t))] = exp −βVeff({Rn})
􏼂 􏼃

(1) 

Veff = U(R1) +
􏽘N−1

n=1

K
2

Rn+1 − Rn − Ln( )2. (2) 

In this equation, A is the Onsager–Machlup action (27), which is a 
functional of the (discretized) Brownian trajectory 
R(t) = R1 → R2 → · · · → RN. β = 1/kBT, while K = mν/2Δt and Ln = 
(Δt/mν)Fn are the effective spring constant and equilibrium length 
that depend on the physical parameters of the underlying 
Brownian dynamics: temperature T, mass m, damping coefficient 
ν, time step Δt (see Materials and Methods for details). U is the poten
tial energy of the system and Fn = −∇U(Rn) is the physical force act
ing on the nth configuration.

Finite temperature MD simulations of the polymer are performed 
by computing the fictitious forces Fn = −∇Rn Veff acting on each con
figuration and are used to generate discretized trajectories distrib
uted according to p[A(R(t))]. Metadynamics, in turn, can be used to 
focus the sampling on the important reactive trajectories connecting 
metastable states. This requires defining CVt in trajectory space.

Following Ref. (30), we define our CVt as the generalized 
end-to-end distance

S({Rn}) = s(RN) − s(R1), (3) 

where, in this work, s(R) is a DeepTDA CVc. The rationale for this 
specific choice of S is that it allows discriminating between elon
gated polymers (large values of |S|), which are likely to represent 
reactive trajectories, from kinetically trapped ones (with a low value 
of |S|), thus aiding in the discovery of new metastable states.

We note that reactive trajectories obtained from this method 
tend to spend more time in proximity to the transition states. 
This happens because the equilibrium spring constants are pro
portional to the physical force vector (Ln ∝ Fn) and, therefore, 
tend to zero close to the stationary points of the potential energy 
surface, including the unstable saddle points (29). This feature in
creases the amount of data generated on transition states that can 
be used to train an efficient ML CVc.

2D model potential
We first applied our iterative protocol to a particle moving in the 
2D model potential (adapted from Müller and Brown (36)) shown 

by the isolines of Fig. 2. The potential has three metastable states: 
an initial basin A and a final basin C which we assume to be known 
beforehand, and an intermediate basin B. The relative positions of 
the three minima were designed to provide a scenario in which 
neither coordinate axis can resolve the transition states and drive 
the exploration of the whole free energy surface. Furthermore, in 
this case, a neural network CV simply trained to discriminate be
tween the A and C is likely to fail, as demonstrated below.

We first performed unbiased simulations in the A and C basins 
and trained an initial 2-state DeepTDA CVc. The value of the latter 
is shown by the colored map reported in Fig. 2a. Clearly, the inter
mediate metastable state B is not discriminated from the C basin 
since the CV attains the same value in the two basins. As a conse
quence, when used in an OPES simulation, we found that this CVc 

is very inefficient in guiding transitions between A and 
C. Furthermore, during the simulation, the system is driven to 
sample unphysical trajectories that differ greatly from the min
imum energy pathway (see Fig. 2c). As a result, we also observe 
that the free energy difference between basins A and C is not ac
curately estimated when compared to the analytical result ob
tained by numerical integration of the potential (see Fig. 3).

Nevertheless, we can employ this suboptimal CV to construct the 
end-to-end distance CVt defined in Eq. 3 for use in a MoP simulation. 
The samples obtained from the simulation in trajectory space are 
reported in Fig. 2e. Notably, the sampled trajectories follow the 
underlying minimum energy pathways. This is due to the forces 
driving the polymer dynamics not being directly related to the po
tential energy surface but rather to the Onsager–Machlup action, 
which is lower for the more statistically relevant ones. By using 
the end-to-end distance CVt, the metadynamics bias acts only on 
the polymer endpoints, while the intermediate replicas are free to 
relax, minimizing the OM action. This illustrates the robustness of 
MoP in sampling physically relevant trajectories even when using 
suboptimal CVt. Importantly, the analysis of the data allows blindly 
detecting the intermediate state from the presence of crumpled pol
ymers confined entirely into this basin, which are characterized by 
small values of the end-to-end distance CVt, S ∼ 0.

Partial reactive trajectories connecting the A and B basins were 
also observed (see Fig. S4b). However, the simulation could not 
sample complete reactive paths connecting from A to C due to 
the suboptimal CVc used in Eq. 3, which cannot distinguish cor
rectly between B and C. We solve this problem by performing a se
cond iteration of the algorithm in which the information gained 
from the MoP run is used to train a refined, 4-states DeepTDA 
CV, including data from the three metastable states plus the tran
sition region between A and B (for all technical details we refer to 
the Materials and Methods). The colored map of the new CVc is 
shown in Fig. 2b. It is apparent that all relevant metastable and 
transition states are resolved.

The new CVc,t drives complete transitions from A to C both 
when used in MoP (Fig. 2f) as well as in standard OPES simulations 
(Fig. 2d). Figure 3 shows that the free energy difference between 
basins A and C, as estimated with the new CVc, is in excellent 
agreement with the analytical result. We also checked that the 
corresponding end-to-end distance CVt improves sampling in tra
jectory space. Figure 2f reports the result of a MoP simulation, 
showing the sampling of complete reactive trajectories connect
ing A and C along the minimum free energy path. The efficiency 
of this CV is further demonstrated by the fact that it was able to 
generate also the partial paths connecting basins A and B, and B 
and C (see Fig. S5b). From the complete reactive paths, we can 
also observe that they indeed spend an increased amount of 
time in the vicinity of the transition state, as illustrated in Fig. S6.
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The new dataset obtained from MoP allowed us to train a 
5-states DeepTDA CVc,t, also including data from the transition 
state between B and C. The resulting CVs, however, did not lead 
to significant improvements respect to the 4-states versions.

Alanine dipeptide
We now move to the conformational dynamics of alanine dipep
tide in vacuum. The free energy surface in the Ramachandran 
plane spanned by the dihedral angles ϕ and ψ is indicated by the 
gray isolines in Fig. 4. The system is characterized by the presence 
of three metastable states, labeled C5, C7eq, and Cax. Specifically, 
the C5 and C7eq conformers are separated by a barrier of the order 
of a few kBT (38) and form a unique basin at room temperature, 
while a minimum barrier of around 13 kBT separates C7eq and Cax.

As done in the previous example, we start by performing un
biased simulations in the two metastable states, and training an 

initial 2-state DeepTDA CVc. In agreement with Ref. (35), we found 
that this CV is already able to drive transitions across the barrier 
separating C7eq and Cax to an acceptable degree when used in an 
OPES simulation (see Fig. 4a). However, in doing so, the system 
does not follow precisely the expected minimum free energy 
path but it samples also trajectories crossing high energy barriers 
around ψ ∼ π/2. This can be explained by the lack of transition 
state data (35). Figure 5 reports a comparison of the performance 
of this CVc with the results obtained from a reference OPES simu
lation performed biasing the ϕ and ψ angles, showing slow conver
gence and a significant discrepancy of 0.2kBT in the free energy 
difference after 5 ns of simulation time.

Figure 4c shows the result of MoP using the corresponding CVt 

in trajectory space, built following Eq. 3. It can be seen that the 
sampling is focused on trajectories which follow the minimum 
free energy path. However, diffusion between the basins C5 and 
C7eq is slow and only one transition takes place. This is due to 

Fig. 2. a) Colored map showing the values of the initial 2-state DeepTDA CVc. Initial, intermediate and final states are labeled as A, B, and C, respectively. 
b) Colored map of the 4-states DeepTDA CVc. Scatter plots of x, y coordinates are shown as obtained from an OPES simulation using c) 2-state and d) 
4-state DeepTDA CVc. Points colored according to the corresponding CVc value. Configurations obtained from MoP simulations using e) the initial 2-state 
and f) the 4-state DeepTDA-based end-to-end distance CVt are shown. The violet and blue paths show the most probable reactive and trapped 
trajectories, respectively, i.e. the ones attaining the lowest value of the Onsager–Machlup action. In all panels, the isolines of the model potential are 
shown in gray as a reference.
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the fact that these two minima are not distinguished by the 
DeepTDA CVc. Furthermore, no paths reach fully into the Cax ba
sin. Again, this can be explained by the lack of information on 
the transition state, which causes the starting CV to reach its max
imum value before the true potential minimum is reached. 
Nonetheless, we can extract data from the transition state from 
the sampled reactive paths to train a new, 3-state DeepTDA CVc 

(see Materials and Methods for details). In Fig.4b, we observe 

that in configuration space, transitions are now confined more 
closely to the minimum free energy paths, improving the effi
ciency of the CVc. This is further supported by Fig. 5, demonstrat
ing improved convergence speed and smaller statistical 
fluctuations of the 3-state DeepTDA CVc, as compared to the 
2-state DeepTDA CVc, and similar convergence speed as the refer
ence calculation. When used in a MoP simulation, reactive paths 
are sampled that reach considerably further inside the Cax state 
(see Fig. 4d) and fully connecting the C7eq and Cax basins. We 
also note that, after starting in the C5 basin, the simulation takes 
the less likely, but known path (29) across the higher barrier be
tween C5 and C7eq, before sampling C7eq and reactive paths be
tween C7eq and Cax. However, these configurations are sampled 
during the initial part of the OPES-based MoP simulation—where 
the bias deposition is particularly aggressive—and are therefore 
exempted from further analysis.

Conclusions
We have presented an iterative approach based on the metady
namics of paths algorithm (30) to reconstruct free energy land
scapes as a function of data-driven CVs using datasets 
supplemented with configurations from the transition state en
semble. In doing so, we have also addressed directly the problem 
of designing efficient CVs in trajectory space. We found that the 
augmentation with MoP data leads to a significant performance 
increase of the learned CVs in configurational space. Good CVs 
could be generated even when using MoP in an exploratory man
ner (i.e. convergence was not needed), thus considerably reducing 
the computational effort required to obtain meaningful results.

Besides being the only path sampling method so far enabling 
the exploration of free energy landscapes using CVs, the use of 

Fig. 3. Free energy difference between the left and right basins of the 
model potential, as estimated from 5 independent OPES simulations 
biasing the 4-state DeepTDA CV, as a function of simulation time. The 
analytical result of 12.15 kBT was obtained by numerical integration over 
the MB potential (37) and is indicated in black, with dotted lines indicating 
a margin of 1 kBT.

Fig. 4. Biased simulations in configuration and trajectory space of alanine dipeptide. Scatter plots of x, y coordinates in OPES simulation using a) 2-state 
and b) 3-state DeepTDA CVc are shown, colored according to CV value. MoP simulations using c) initial and d) 3-state DeepTDA CVt are shown, shown as 
normalized density of all configurations in logarithmic scale. The violet paths show the most probable reactive trajectories, i.e. the ones attaining the 
lowest value of the Onsager–Machlup action. In all panels, isolines of the FES obtained from a reference calculation are shown in gray.
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MoP to obtain transition state data offers several other advan
tages: (i) in contrast to previous approaches (23, 24, 26, 34), MoP 
enables the sampling of (non)reactive trajectories in an uncon
strained manner and is robust to the choice of sub-optimal CVs; 
(ii) running MoP amounts to a single metadynamics simulation, 
considerably simplifying the methodology compared to Monte 
Carlo approaches like transition path sampling; (iii) MoP can be 
implemented in an extremely parallel fashion (39) to exploit mod
ern massively parallel supercomputers (which have recently 
breached the exascale limit); (iv) compared to chain-of-states 
methods (29, 40, 41) MoP generates a large amount of configura
tions, which is required for data-driven applications like ours.

The efficiency of our procedure was tested in two models of in
creasing complexity, including a simple molecular system. We ex
pect our protocol to aid in the discovery of CVs, the exploration of 
transition pathways, and the estimation of free energy profiles in 
complex systems of relevance in biology, chemistry, and materi
als science. Future work will focus on scaling the proposed proto
col to more challenging, real-world applications. While MoP can 
be readily applied to the condensed phase, including explicit solv
ent, applications to large macromolecules of our ML approach will 
need a suitable set of input descriptors such as backbone dihedral 
angles, per-residue Q-values, or water coordination numbers (42, 
43).

Finally, we note that, in this work, we have focused on building 
ML CVs that use only the spatial distribution of the samples ob
tained from MoP data. However, learning dynamical information 
from the trajectory data (18, 19, 44) is another very appealing av
enue, as the sampled paths carry information on the unbiased dy
namics of the system.

Materials and methods
DeepTDA CVs
The DeepTDA neural network CVs (35) are trained in PyTorch us
ing an existing implementation in the mlcolvar package (45), in its 
release v0.2.0. The networks use a feed-forward architecture with 
3 hidden layers with {24, 12, 1} nodes and the ReLU activation 
function. To enforce the target distribution on the latent CV space, 

the objective function for the neural network is chosen to be a 
mean-squared error between the mean and standard deviation 
at the hidden layer and their respective target values, μtg and σtg, 
which in the 1D case is given by,

L =
􏽘Ns

k

α(μk − μtg
k )2 + β(σk − σtg

k )2, (4) 

where k denotes the Ns different states, and the hyperparameters 
α and β ensuring adequate scaling of the respective loss terms. The 
resulting DeepTDA CV is normalized over the training data to a 
range of −1 ≤ s ≤ 1.

In all trained networks, the parameters are optimized using the 
ADAM optimizer (46) with a learning rate of 10−3. In addition to the 
TDA loss in Eq. 4, L2 regularization with λ = 10−5 has been added to 
the weights. The training is stopped when convergence of the loss 
function is reached, using an Early-Stopping routine with patience 
set to 15 epochs to avoid overfitting. The hyperparameters α and β 
were set to values of 1 and 250, respectively.

2D model potential
To evaluate the proposed methodology, we designed a 2D model 
potential, based on the analytical form introduced by Müller 
and Brown (36). The isolines of this modified potential are shown 
in Fig. S1 and has the analytical from

UMB(x, y) =
􏽘

k

Akexp ak(x − x0
k)2

􏽨

+bk(x − x0
k )(y − y0

k) + ck(y − y0
k)2
􏽩
,

A = ( − 16, − 11, − 17, 2),

a = ( − 10, − 1, − 6.5, 0.4),

b = (5, 0, 11, 0),

c = ( − 5, − 10, − 6.5, 1.1),

x0 = (1, 0, − 0.5, 0),

y0 = (1.2, 0.5, 1.5, 1).

(5) 

All simulations in this work are started in basin A, where the po
tential assumes its global minimum. In this work, we consider 
Langevin dynamics of a single particle moving along the model 
potential. The simulations use natural units, such that kB = 1, 
and a temperature of T = 0.1, placing the highest free energy bar
rier at around 120 kBT.

Because the analytical form of the potential is known, the dif
ference in free energy between the basins A and C can be calcu
lated directly via numerical integration, with

ΔF = −
1
β

log
∫C e−βUMB(x,y) dx dy

∫A e−βUMB(x,y) dx dy
, (6) 

where A = {(x, y) ∣ y > x + 1.5} and C = {(x, y) ∣ x − 1.5 < y < x + 1.5}, 
which in this case equates to 12.15 kBT.

The simulations in configurational space of the 2D model po
tential were performed using the molecular simulation engine 
LAMMPS (47) in its stable release version from 23. June 2022, 
patched with PLUMED 2.8 (48), which also provides an interface 
with the LibTorch C++ library to implement the neural network- 
based DeepTDA CVs (45). The damping constant in the Langevin 
thermostat is set to a value of 0.1, which corresponds to a value 
of ν = 10, and the time step is set to Δt = 0.01 in arbitrary units of 
time.

To perform enhanced sampling simulations, we here use the 
recently introduced OPES method (10), an implementation for 
which is provided in PLUMED. For detailed information about 
the usage of this bias potential and a definition of the relevant 

Fig. 5. Free energy difference between the C7eq and Cax basins of alanine 
dipeptide over time. Shown are the results obtained from 5 independent 
enhanced sampling simulations respectively, biasing the 2-state and 
3-state DeepTDA CV, as well as reference calculation using the dihedral 
angles ϕ, ψ as CV.
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parameters, the reader is referred to the PLUMED documentation. 
For the OPES simulation with the initial 2-state DeepTDA CV, the 
parameters are set to BARRIER =17, PACE =300, and SIGMA =0.03. 
The SIGMA is chosen to reflect the standard deviation of the CV 
values in a short, unbiased simulation. For OPES simulation using 
the 4-state DeepTDA CV, the parameter values BARRIER =15, 
PACE =300, and SIGMA =0.01. The SIGMA parameter is again chos
en as the CVs standard deviation in unbiased simulation, and the 
BARRIER parameter is lowered to allow for faster convergence.

To carry out the Metadynamics of Paths simulations in trajec
tory space, an extra fix is added to the LAMMPS suite, adapted 
from Ref. (30) to directly evaluate the analytical derivatives of 
the potential. The friction and time step parameter of the polymer 
are set to ν = 10 and Δt = 0.01, respectively. The polymer length 
should be chosen to allow sampling the reactive trajectory of 
interest. Here, a value of N= 288 was found to be sufficient. Note 
that thanks to its parallel implementation, the computational 
cost per time step of the MoP algorithm only weakly depends on 
the polymer size (see Fig. S2). In trajectory space, the polymers 
are then sampled at a time step of 0.01 and a damping constant 
of damp =100. The initial configuration for the polymer was ob
tained by running an unbiased MetaD of Paths simulation starting 
from the same configuration for every bead at r = ( − 0.5, 1.5) and 
letting the polymer relax for 104 steps. While relaxing the polymer 
removes the dependence on the precise starting conformation, we 
found that it is necessary to run a sufficient number of relaxation 
steps in order to achieve a faster exploration of relevant reactive 
trajectories.

To enhance the sampling of the polymers, OPES is again used. 
The underlying configurational DeepTDA CV is first evaluated 
on each bead. Then, a modified version of the CUSTOM/ 
MATHEVAL action is used to access the values from different 
beads, to evaluate the end-to-end difference for use as the trajec
tory CV. MoP simulations with both the initial DeepTDA CV and 
the 4-state CV are performed with OPES parameters set to 
BARRIER =20 and PACE =500, and an adaptive SIGMA. In both 
cases, the MoP simulations were run for 2 × 106 steps, saving poly
mer configurations every 500 steps.

DeepTDA CV training for 2D model potential
For the initial DeepTDA CV s0 on the unbiased training data, the 
target centers and widths are chosen as μtg = [ − 7, 7] and 
σtg = [0.2, 0.2], respectively. The training dataset consists of 6,000 
configurations from each of the initial metastable states, as 
shown labeled “unbiased data” in Fig. S3b.

We now train the 4-state DeepTDA CV in a two-step process, 
the reason for which is explained below. From the trajectory 
data, shown in Fig. 2e, we first isolate the reactive trajectories 
and those trapped in metastable states. This can be quantified 
by using the trajectory CV S({Ri}) in Eq. 3, and we here classify as 
kinetically trapped or confined trajectories with values of 
S ≤ 0.3. In this way, we find trajectories trapped in the initial basin 
A, but also those confined to the previously “unknown” basin B. To 
separate these configurations between known and unknown 
states, OPTICS clustering (49) is used.

To filter the reactive trajectories, the range of values to select 
for depends strongly on the respective system under consider
ation, and how well the initial DeepTDA CV is able to discern dif
ferent regions of the phase space, which is why we first train a 
3-state DeepTDA CV s1. For the training of this CV, target centers 
and widths for this CV are chosen as μtg = [ − 15, 0, 15] and 
σtg = [0.3, 1.0, 0.3], respectively, corresponding to a respective 

separation of Δ = 15. Evaluating this CV on the previously obtained 
trajectory data, we can now much more confidently set a thresh
old of |S{Ri}| ≥ 1 to select trajectories that connect A and B. Now, 
information from the reactive paths is taken into account, by se
lecting configurations that satisfy μA + 3σA ≤ s1(r) ≤ μint − 3σint, 
where the μA/int and σA/int denote mean and standard deviation 
in the initial/intermediate metastable states, respectively. The 
precise multiple of the standard deviation should be chosen 
carefully, as to select data that covers as wide a CVc range as 
possible, without introducing overlaps. These data are added as 
a fourth state for the training of the 4-state DeepTDA CV s2, 
using the target widths μtg = [ − 30, − 15, 0, 15] and centers 
σtg = [0.3, 4.0, 1.0, 0.3], and the training data are shown in 
Fig. S3a. These values are chosen by visual inspection of the CV 
histograms in the training data, to select for sharp peaks in the 
metastable states and broader, slightly overlapping distributions 
for the reactive paths and transition states (see Fig. S3b). In both 
cases, a random subset of 6,000 configurations is selected from 
the trapped and reactive trajectory data, to match the amount 
of unbiased data. A comparison of the performance of the 
2- and 4-state DeepTDA CVs in an OPES simulation in configur
ation space is shown in Fig. S7. In the supplementary material, 
we also provide snapshots of the polymer configurations from 
MoP simulations with both CVs (see Fig. S8) and a supporting mov
ie M1 showing the evolution of the MoP simulation using the 
4-state DeepTDA CV. We also show the distribution of |S| values 
for both CVs (see Fig. S9), as well as results of MoP simulations 
starting in the metastable basins B and C (see Fig. S10).

Alanine dipeptide
For the simulations of the conformational dynamics of alanine di
peptide in vacuum, we again used LAMMPS patched with 
PLUMED. The Amber99-SB (50) force field was used, converted 
for use in LAMMPS using the convert.py script in the InterMol 
(51) software. We consider Langevin dynamics in an NVE ensem
ble at a temperature of 300 K, and use a time step of 0.5 fs and a 
dampening constant of 500 fs. To perform biased simulations 
with the DeepTDA CVs in OPES, we used parameter values 
BARRIER =50, PACE =100, and an adaptive SIGMA.

To carry out MoP simulations, we used the path_dynamics fix 
provided by and described in Ref. (30). The parameters of the poly
mer are set to ν = 0.25

1
s 

and Δt = 1 fs. In trajectory space, the poly
mers, made up of N = 512 beads, are then sampled at a time step of 
1.0 and a damping constant of damp =1,000 in trajectory space. 
The initial configuration for the polymer was obtained by running 
an unbiased simulation in configuration space for 106 steps, and 
saving the last 512 steps as initial configurations for the polymer 
beads. The polymer was then allowed to equilibrate in an un
biased MoP simulation for 106 steps. As described above, we again 
use OPES to drive the sampling of the polymers with a bias poten
tial, using parameter values BARRIER =80 and PACE =1,000, as 
well as a bias factor of 15. We again ran MoP simulations for 4 × 
106 steps for both realizations of the DeepTDA CV, saving polymer 
configurations every 1,000 steps.

The DeepTDA neural network-CVs for alanine dipeptide are 
trained with largely identical settings to the case of the model po
tential, with the exception of a learning rate of 10−3. As a set of de
scriptors, we use the set of pairwise distances between the heavy 
atoms of alanine dipeptide, as compiled by Bonati et al. (17), there
by insuring rototranslational invariance of our CV.

The 2-state DeepTDA CV s0 is trained with 4,000 configurations 
each from the C5/C7eq and Cax basins, respectively. As values for 
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the target centers and widths for the modes in CV spaces, we again 
choose μtg = [ − 7, 7] and σtg = [0.2, 0.2]. Proceeding as described in 
the main text, by first separating the trajectory data, sampled with 
MoP using the 2-state CV, into trapped paths with a value of 
S({Ri}) ≤ 0.5 and reactive paths with S({Ri}) ≥ 1.2 (see Fig. S12). In 
this case, we do not observe any confined data in previously unex
plored regions, so we proceed by integrating data from the transi
tion state as an intermediary. The training data for the 3-state 
DeepTDA CV s1 is thus chosen by selecting configurations with 
s0 ≥ 0.3 from the reactive paths, as shown in Fig. S11. From this 
data, we again choose a random subset of 4,000 configurations 
to match the amount of unbiased data, and train the new CV 
by choosing target centers and widths μtg = [ − 7, 0, 7] and 
σtg = [0.3, 1.0, 0.3]. Trapped and reactive trajectories identified 
from a MoP simulation using this new CV are reported in Fig. 
S13, and a comparison of the performance of the 2- and 3-state 
CVs in an OPES simulation in configuration space is given in Fig. 
S14. In the supplementary material, we also provide snapshots 
of the polymer configurations from MoP simulations with both 
CVs (see Fig. S15) and a supporting movie M2 showing the evolu
tion of the MoP simulation using the 3-state DeepTDA CV. We 
also show the distribution of |S| values for both CVs (see Fig. 
S16), as well as results of a MoP simulation starting in the metasta
ble state Cax (see Fig. S17).

Note
a Note that the choice of DeepTDA was made here mainly because of 

its simplicity and straightforward interpretation. However, the data 
generated by MoP could be used to train many other data-driven 
methods (18–21, 23, 24).

Supplementary Material
Supplementary material is available at PNAS Nexus online.
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