001025182 001__ 1025182
001025182 005__ 20250204113838.0
001025182 0247_ $$2doi$$a10.1016/j.bpj.2023.11.1698
001025182 0247_ $$2ISSN$$a0006-3495
001025182 0247_ $$2ISSN$$a1542-0086
001025182 037__ $$aFZJ-2024-02759
001025182 082__ $$a570
001025182 1001_ $$0P:(DE-HGF)0$$aKelly, Maria S.$$b0
001025182 1112_ $$aBiophysical Society Meeting$$cPhiladelphia$$d2024-02-10 - 2024-02-14$$wUSA
001025182 245__ $$aOptimizing biophysical predictor selection for katanin allosteric transitions via metadynamics and machine learning
001025182 260__ $$c2024
001025182 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s1714556723_354
001025182 3367_ $$033$$2EndNote$$aConference Paper
001025182 3367_ $$2BibTeX$$aINPROCEEDINGS
001025182 3367_ $$2DRIVER$$aconferenceObject
001025182 3367_ $$2DataCite$$aOutput Types/Conference Abstract
001025182 3367_ $$2ORCID$$aOTHER
001025182 520__ $$aKatanin, a microtubule-severing enzyme, plays a pivotal role in regulating cytoskeletal dynamics, cell division, and intracellular transport. Katanin does this by forming a hexamer and undergoing a conformational change from its open “spiral” to closed “ring” state, which enacts mechanical forces required for the removal of tubulin dimers from the microtubule lattice. Allosteric regulation has emerged as a critical aspect of katanin’s functionality, where binding of ATP and tubulin carboxy-terminal tails (CTTs) allows katanin to transition from spiral to ring. Additionally, CTT sequence diversity and post-translational modifications are known to modulate katanin activity. Thus, there is a need to learn more about katanin’s allosteric response to ligand binding to understand its full mechanism. Here, we ran molecular dynamics simulations of katanin and surveyed a wide range of biophysical descriptors that reduce the dimensionality of the all-atomistic output while allowing us to identify katanin’s allosteric responses to ligand binding. We studied many physical and chemical predictors within katanin’s monomeric and hexameric form, such as solvent accessibility and salt bridge distances, using machine learning classification algorithms to attribute large descriptor differences to allosteric responses from the binding of either ATP or the CTT. Effective predictors were then utilized as collective variables for metadynamics simulations, that introduce bias potentials to aid in the exploration of the free energy landscape to simulate katanin’s transition from its spiral to ring configuration. We can then test how the binding of relevant CTT sequences affects katanin’s free energy landscape during this transition. In total, we can study the complexity of allosteric regulation through various applications using multiple biophysical features of katanin.
001025182 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
001025182 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001025182 7001_ $$0P:(DE-Juel1)174546$$aCapelli, Riccardo$$b1
001025182 7001_ $$0P:(DE-HGF)0$$aKahawatte, Shehani$$b2
001025182 7001_ $$0P:(DE-HGF)0$$aWijethunga, Hesaree$$b3
001025182 7001_ $$0P:(DE-Juel1)145614$$aCarloni, Paolo$$b4$$ufzj
001025182 7001_ $$0P:(DE-HGF)0$$aDima, Ruxandra I.$$b5
001025182 773__ $$0PERI:(DE-600)1477214-0$$a10.1016/j.bpj.2023.11.1698$$gVol. 123, no. 3, p. 273a -$$x0006-3495$$y2024
001025182 8564_ $$uhttps://www.sciencedirect.com/science/article/pii/S0006349523023986/pdfft?md5=604e1f41185155579621d3b9e4ff276a&pid=1-s2.0-S0006349523023986-main.pdf
001025182 909CO $$ooai:juser.fz-juelich.de:1025182$$pVDB
001025182 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145614$$aForschungszentrum Jülich$$b4$$kFZJ
001025182 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
001025182 9141_ $$y2024
001025182 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-23
001025182 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-23
001025182 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-23
001025182 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-21
001025182 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-21
001025182 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-21
001025182 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-21
001025182 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-21
001025182 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-21
001025182 920__ $$lyes
001025182 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x0
001025182 9201_ $$0I:(DE-Juel1)INM-9-20140121$$kINM-9$$lComputational Biomedicine$$x1
001025182 980__ $$aabstract
001025182 980__ $$aVDB
001025182 980__ $$aI:(DE-Juel1)IAS-5-20120330
001025182 980__ $$aI:(DE-Juel1)INM-9-20140121
001025182 980__ $$aUNRESTRICTED