001025183 001__ 1025183
001025183 005__ 20250204113838.0
001025183 0247_ $$2doi$$a10.1016/j.bpj.2023.11.2011
001025183 0247_ $$2ISSN$$a0006-3495
001025183 0247_ $$2ISSN$$a1542-0086
001025183 037__ $$aFZJ-2024-02760
001025183 082__ $$a570
001025183 1001_ $$0P:(DE-Juel1)187548$$aBondar, Ana-Nicoleta$$b0$$ufzj
001025183 1112_ $$aBiophysical Society Meeting$$cPhiladelphia$$d2024-02-10 - 2024-02-14$$wUSA
001025183 245__ $$aMechanism by which water interactions stabilize a pH-dependent membrane pore
001025183 260__ $$c2024
001025183 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s1714711547_26324
001025183 3367_ $$033$$2EndNote$$aConference Paper
001025183 3367_ $$2BibTeX$$aINPROCEEDINGS
001025183 3367_ $$2DRIVER$$aconferenceObject
001025183 3367_ $$2DataCite$$aOutput Types/Conference Abstract
001025183 3367_ $$2ORCID$$aOTHER
001025183 520__ $$aPeptides that can form large, stable pores at acidic pH values are of direct interest to deliver cargo to cells and cell compartments with acidic pH. Peptides of the pHD (pH-dependent delivery peptides) have the unique property of forming stable pores with diameters of ∼30–-100 Å at pH below ∼6. Such a pore size could be established with ∼8–30 peptides, and each peptide carries several sidechains that can titrate at the pH of interest. Understanding which protonation states are compatible with stable pore formation is essential, as it could guide rational design of new peptides with pore-forming properties tailored to specific cells and cell compartments. We report on experiment-guided atomistic simulations that probe the protonation-coupled structure and dynamics of pHD pores. To identify interactions that could contribute to the stability of the pores, we used the Bridge/Bridge2 graph algorithm and graphical user interface to compute the hydrogen-bond networks sampled by the peptides, lipid phosphate groups, and water. We identify a complex network of interactions between peptides, lipid headgroups, and water molecules, with water molecules bridging neighboring peptides via dynamic hydrogen bonding. Research was supported in part by the National Institutes of Health award no. 1R01GM151326-01 and by the computing time allocation PHDPORES from the JURECA-DC Supercomputing Cluster of the Forschungszentrum Jülich.
001025183 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x0
001025183 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001025183 7001_ $$0P:(DE-HGF)0$$aHristova, Kalina$$b1
001025183 7001_ $$0P:(DE-HGF)0$$aWimley, William C.$$b2
001025183 773__ $$0PERI:(DE-600)1477214-0$$a10.1016/j.bpj.2023.11.2011$$gVol. 123, no. 3, p. 329a - 330a$$x0006-3495$$y2024
001025183 8564_ $$uhttps://www.sciencedirect.com/science/article/pii/S000634952302711X/pdfft?md5=9a7564d8475a2a04222d4703f0f8350b&pid=1-s2.0-S000634952302711X-main.pdf
001025183 909CO $$ooai:juser.fz-juelich.de:1025183$$pVDB
001025183 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187548$$aForschungszentrum Jülich$$b0$$kFZJ
001025183 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
001025183 9141_ $$y2024
001025183 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-23
001025183 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-23
001025183 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-23
001025183 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-21
001025183 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-21
001025183 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-21
001025183 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-21
001025183 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-21
001025183 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-21
001025183 920__ $$lyes
001025183 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x0
001025183 9201_ $$0I:(DE-Juel1)INM-9-20140121$$kINM-9$$lComputational Biomedicine$$x1
001025183 980__ $$aabstract
001025183 980__ $$aVDB
001025183 980__ $$aI:(DE-Juel1)IAS-5-20120330
001025183 980__ $$aI:(DE-Juel1)INM-9-20140121
001025183 980__ $$aUNRESTRICTED