001025193 001__ 1025193
001025193 005__ 20240918100827.0
001025193 020__ $$a978-3-031-57792-5 (print)
001025193 020__ $$a978-3-031-57793-2 (electronic)
001025193 0247_ $$2doi$$a10.1007/978-3-031-57793-2_25
001025193 0247_ $$2ISSN$$a0302-9743
001025193 0247_ $$2ISSN$$a1611-3349
001025193 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-02761
001025193 0247_ $$2WOS$$aWOS:001280284700025
001025193 037__ $$aFZJ-2024-02761
001025193 041__ $$aEnglish
001025193 1001_ $$0P:(DE-HGF)0$$aKahra, Marvin$$b0$$eCorresponding author
001025193 1112_ $$aIAPR Third International Conference on Discrete Geometry and Mathematical Morphology$$cFlorence$$d2024-04-15 - 2024-04-18$$gDGMM 2024$$wItaly
001025193 245__ $$aAn Approach to Colour Morphological Supremum Formation Using the LogSumExp Approximation
001025193 260__ $$aCham$$bSpringer$$c2024
001025193 29510 $$aDiscrete Geometry and Mathematical Morphology
001025193 300__ $$a325-337
001025193 3367_ $$2ORCID$$aCONFERENCE_PAPER
001025193 3367_ $$033$$2EndNote$$aConference Paper
001025193 3367_ $$2BibTeX$$aINPROCEEDINGS
001025193 3367_ $$2DRIVER$$aconferenceObject
001025193 3367_ $$2DataCite$$aOutput Types/Conference Paper
001025193 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1714564245_3375
001025193 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
001025193 4900_ $$aLecture Notes in Computer Science$$v14605
001025193 520__ $$aMathematical morphology is a part of image processing that has proven to be fruitful for numerous applications. Two main operations in mathematical morphology are dilation and erosion. These are based on the construction of a supremum or infimum with respect to an order over the tonal range in a certain section of the image. The tonal ordering can easily be realised in grey-scale morphology, and some morphological methods have been proposed for colour morphology. However, all of these have certain limitations.In this paper we present a novel approach to colour morphology extending upon previous work in the field based on the Loewner order. We propose to consider an approximation of the supremum by means of a log-sum exponentiation introduced by Maslov. We apply this to the embedding of an RGB image in a field of symmetric 2x2matrices. In this way we obtain nearly isotropic matrices representing colours and the structural advantage of transitivity. In numerical experiments we highlight some remarkable properties of the proposed approach.
001025193 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001025193 588__ $$aDataset connected to CrossRef Book Series, Journals: juser.fz-juelich.de
001025193 7001_ $$0P:(DE-HGF)0$$aBreuß, Michael$$b1
001025193 7001_ $$0P:(DE-Juel1)169421$$aKleefeld, Andreas$$b2$$ufzj
001025193 7001_ $$0P:(DE-HGF)0$$aWelk, Martin$$b3
001025193 773__ $$a10.1007/978-3-031-57793-2_25
001025193 8564_ $$uhttps://link.springer.com/chapter/10.1007/978-3-031-57793-2_25
001025193 8564_ $$uhttps://juser.fz-juelich.de/record/1025193/files/An_Approach_to_Colour_Morphological_Supremum_Formation_using_the_LogSumExp_ApproximationSubmitted.pdf$$yOpenAccess
001025193 8564_ $$uhttps://juser.fz-juelich.de/record/1025193/files/An_Approach_to_Colour_Morphological_Supremum_Formation_using_the_LogSumExp_ApproximationSubmitted.gif?subformat=icon$$xicon$$yOpenAccess
001025193 8564_ $$uhttps://juser.fz-juelich.de/record/1025193/files/An_Approach_to_Colour_Morphological_Supremum_Formation_using_the_LogSumExp_ApproximationSubmitted.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001025193 8564_ $$uhttps://juser.fz-juelich.de/record/1025193/files/An_Approach_to_Colour_Morphological_Supremum_Formation_using_the_LogSumExp_ApproximationSubmitted.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001025193 8564_ $$uhttps://juser.fz-juelich.de/record/1025193/files/An_Approach_to_Colour_Morphological_Supremum_Formation_using_the_LogSumExp_ApproximationSubmitted.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001025193 909CO $$ooai:juser.fz-juelich.de:1025193$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001025193 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169421$$aForschungszentrum Jülich$$b2$$kFZJ
001025193 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001025193 9141_ $$y2024
001025193 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-09-03
001025193 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001025193 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-09-03$$wger
001025193 920__ $$lyes
001025193 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001025193 980__ $$acontrib
001025193 980__ $$aVDB
001025193 980__ $$aUNRESTRICTED
001025193 980__ $$acontb
001025193 980__ $$aI:(DE-Juel1)JSC-20090406
001025193 9801_ $$aFullTexts